US 11,882,673 HEAT SPREADER HAVING CONDUCTION ENHANCEMENT WITH EMI SHIELDING

Download Patent (PDF)

A heat spreader including a body having a first conduction value and a first electromagnetic interference shield value. The heat spreader further includes a conduction enhancement affixed to the body, the conduction enhancement having a second conduction value greater than the first conduction value and a second electromagnetic interference shield value less than the first electromagnetic interference shield value. At least a portion of the conduction enhancement is positioned relative to the body for increasing an effective electromagnetic interference shield value of the body associated with at least a portion of the conduction enhancement.

US 11,535,407 B1 THERMAL MANAGEMENT SYSTEM

Download Patent (PDF)

A thermal management system adapted to vent a two – phase working fluid into an environment having a higher pressure than a vapor pressure of a working fluid corresponding to a set point of the system including a secondary vessel containing a secondary species . The system includes a primary vessel containing the working fluid and the secondary species, and at least one valve to selectively control venting of a mixture of the working fluid and the secondary species from the primary vessel to the environment . The system includes at least one valve connected between the primary vessel and the secondary vessel to selectively control charging of the secondary species into the primary vessel .

U.S. PATENT NUMBER 11,408,684 B1 LOOP HEAT PIPE EVAPORATOR B

Download Patent (PDF)

A loop heat pipe evaporator includes a porous primary wick, and a nonporous envelope unseparatingly surrounding the primary wick . The primary wick and the envelope are of one-piece construction.

Patent No: US 11,408,683 HEAT TRANSFER DEVICE HAVING AN ENCLOSURE AND A NON – PERMEABLE BARRIER INSIDE THE ENCLOSURE

Download Patent (PDF)

A heat transfer device includes a hollow spacer between opposed substrates, defining an enclosure, at least one of the substrates adapted to be secured to at least one heat source. A non-permeable barrier is in the enclosure between the substrates. A first chamber inside the enclosure is defined by the spacer, the substrates, and the barrier, the first chamber in fluid communication with at least one first inlet and first outlet. A second chamber inside the enclosure and outside the first chamber and is defined by the spacer, the substrates, and the barrier, the second chamber in fluid communication with at least one-second outlet. A wick structure is secured to at least one substrate, a first portion of the wick structure in the first chamber, and a second portion of the wick structure in the second chamber and interconnecting in passive liquid communication with the first portion.

U.S. Patent Number 11,365,133-VACUUM FREEZING NUCLEATED LIQUID WATER FOR PURIFYING BRACKISH WATER

Download Patent (PDF)

A method of purifying brackish water includes mixing brackish water with a nucleating agent, forming nucleated liquid water and distributing droplets of the nucleated liquid water inside a vacuum chamber, vacuum freezing the droplets of the nucleated liquid water in the vacuum chamber. The method further includes the droplets forming pure water vapor, nucleated ice, and remaining brackish water, mixing and liquifying the pure water vapor and the nucleated ice, forming a mixture of purified liquid water and the nucleating agent. The method further includes separating the mixture of purified liquid water and the nucleating agent, forming purified liquid water and the nucleating agent.

U.S. Patent 11,353,270 – Acceleration and Orientation Resistant Multilayer Heat Pipe Embedded Heat Spreader and Method to Fabricate the Same

Download Patent (PDF)

An apparatus for dissipating thermal energy including a baseplate including a first body having a first groove and a second groove intersecting one another, the first groove and the second groove formed in and only accessible from a first side of the baseplate. The apparatus including a first heat pipe and a second heat pipe arranged and disposed to provide both an overlapping arrangement and a nonoverlap ping arrangement within the first groove and the second groove of the baseplate.

US 11,184,996 B1 DOUBLE SIDED HEAT EXCHANGER COOLING UNIT

Download Patent (PDF)

A cooling unit positioned between first and a second gas stream, the first and the second gas stream having no direct fluid contact therebetween. The cooling unit includes a double-sided heat exchanger with a first side that is in thermal communication with the first gas stream and a second side that is in thermal communication with the second gas stream. The double-sided heat exchanger provides a direct path of thermal conduction between the first gas stream and the second gas stream. First fins are provided on the first side of the double-sided heat exchanger and the second fins are provided on the second side of the double-sided heat exchanger. A first surface area of the first side of the double-sided heat exchanger is at least 5 % greater than a second surface area of the second side of the double-sided heat exchanger. A housing surrounds a fan and the second fins.

U.S. Patent 10,928,139 – ASSEMBLY AND PROCESS FOR HEAT TRANSFER WITH THREE SURFACES

Download Patent (PDF)

A heat transfer assembly includes a movable heat transfer device in contact with a heat sink and a conduction card in contact with the heat sink, the conduction card being thermally connected to the movable heat transfer device. The movable heat transfer device contacts at least two surfaces of the heat sink, is a condenser, includes at least one non-perpendicular angle, or a combination thereof. The conduction card contacts at least one surface of the heat sink, includes at least one non-perpendicular angle, or a combination thereof. The heat transfer assembly contacts at least three surfaces of the heat sink.

U.S. Patent 10,837,712 – MULTI-BORE CONSTANT CONDUCTANCE HEAT PIPE FOR HIGH HEAT FLUX AND THERMAL STORAGE

Download Patent (PDF)

A heat pipe device comprising at least two of the following: an axially grooved bore for thermal transport, the axially grooved bore having an axial groove wick; a phase change material bore for thermal storage, the phase change material bore having internal fins to enhance heat transfer, the internal fins extend along the axis of the phase change material bore; and a porous media bore for accepting high heat fluxes, the porous media bore having a porous media wick in areas  of high heat flux.

U.S. Patent 10,605,541 – HEAT PIPE–THERMAL STORAGE MEDIUM BASED COOL STORAGE SYSTEM

Download Patent (PDF)

A cool storage system comprising which includes a plurality of heat pipes. Each of the heat pipes has a lower evaporator section, a hybrid evaporator/condensing section, and an upper condensing section. The hybrid evaporator/condensing section positioned between the lower evaporator section and the upper condensing section. Each of the heat pipes contains a selected amount of a heat transfer fluid adapted to transfer heat from the lower evaporator section to the hybrid evaporator/condensing section and the upper condensing section through a vapor/condensation cycle, or the heat transfer fluid is vaporized in the hybrid evaporator and condensed in the upper evaporator section. A thermal storage medium is provided in thermal engagement with the hybrid evaporator/condensing section. A heat source is located in said lower evaporator section, and a cooling source, located in said upper condensing section.

U.S. Patent 10,638,639 – DOUBLE SIDED HEAT EXCHANGER COOLING UNIT

Download Patent (PDF)

A cooling unit positioned between a first gas stream and a second gas stream, the first gas stream and the second gas stream having no direct fluid contact therebetween. The cooling unit includes a double-sided heat exchanger with a first side that is in thermal communication with the first gas stream and a second side that is in thermal communication with the second gas stream. The double-sided heat exchanger provides a direct path of thermal conduction between the first gas stream and the second gas stream. First fins are provided on the first side of the double-sided heat exchanger and second fins are provided on the second side of the double-sided heat exchanger. A first surface area of the first side of the double-sided heat exchanger is at least 5% greater than a second surface area of the second side of the double-sided heat exchanger.

U.S. Patent 10,557,391 – INCINERATION SYSTEM AND PROCESS

Download Patent (PDF)

An incineration system includes an inlet channel supplying an inlet stream comprising a waste gas containing at least one volatile organic compound, a waste gas sensor measuring at least one property of the waste gas, an oxidizing gas supply controllably providing oxidizing gas to the inlet channel, an incinerator receiving the inlet stream from the inlet channel, an ignitor initiating combustion of the inlet stream in the reaction zone of the incinerator, and a controller receiving data from the waste gas sensor and controlling flow of oxidizing gas from the oxidizing gas supply into the inlet channel. The spiral heat exchanger defines a reaction zone, an incoming path from the inlet channels to the reaction zone, and an outgoing path from the reaction zone to an exhaust channel. The incoming path and the outgoing path extend in alternating concentric spirals with the incoming path being countercurrent to the outgoing path.

U.S. PATENT 10,502,497 – CONSTANT CONDUCTANCE HEAT PIPE FOR HIGH HEAT FLUX

Download Patent (PDF)

A heat pipe assembly that includes at least one axial groove heat pipe and at least one porous media heat pipe. The porous media heat pipe may be embedded into a flange of the axial groove heat pipe, or embedded into a wall of the axial groove heat pipe, or embedded into another bore of the axial groove heat pipe. The evaporator of the at least one porous media heat pipe may be located remotely and can accept a high heat flux, while a condenser of the at least one porous media heat pipe is attached to the axial groove heat pipe.

U.S. Patent 10,495,388

Download Patent (PDF)

A thermal energy storage system includes a phase change composition including a phase change material. The phase change composition has a first melting temperature at a first hydration level and a second melting temperature at a second hydration level. The phase change composition stores thermal energy by converting from a solid to a liquid. The thermal energy storage system also includes at least one compartment containing the phase change composition and at least one tuning medium receiving water to adjust the phase change composition from the first hydration level to the second hydration level and supplying water to adjust the phase change composition from the second hydration level to the first hydration level. A method of storing and releasing thermal energy is also disclosed.

U.S. Patent 10,371,459

Download Patent (PDF)

A thermally actuated heat pipe control valve including a housing, a phase change material actuator, and a passage closing member. A passage extends through the housing and is configured to receive working fluid from the heat pipe therein. The phase change material actuator is positioned in the housing and has a sealed chamber with phase change material positioned therein. The passage closing member is positioned in the housing proximate to or in the passage and proximate to the phase change material actuator. The passage closing member has a surface which cooperates with a wall of the passage. As the temperature of the phase change material reaches a designed temperature, the phase change material melts and expands causing the passage closing member to move into the passage to a closed position, preventing heat transfer between the condenser portion and the evaporator portion when the designed temperature is reached or exceeded.

U.S. Patent 10,386,121

Download Patent (PDF)

Open-loop thermal management systems and open-loop thermal management processes are disclosed. The process includes providing an open-loop thermal management system, saturating a reactor of the system with gas while a flow control unit prevents flow of the gas from the reactor, and maintaining a gas dissociation pressure range of the gas within the reactor. The system includes the reactor being arranged to receive a heat load. The reactor contains metal hydrides, metal organic framework, or a combination thereof. The reactor includes at least one venting line extending from the reactor. Also, the flow control unit is configured to adjustably control the flow of gas from the reactor to maintain the gas dissociation pressure range.

U.S. Patent 10,215,501

Download Patent (PDF)

A thermally actuated heat pipe control valve which includes a housing having a first opening for receiving a condenser portion of a heat pipe therein, a second opening for receiving an evaporator portion of the heat pipe therein and a passage extending through the housing from the first opening to the second opening. The passage is configured to receive working fluid from the heat pipe therein. A passage closing member is positioned in the housing proximate to or in the passage. The passage closing member having a surface which cooperates with a wall of the passage. At a specific temperature, the passage closing member moves into the passage to a closed position, preventing the flow of the working fluid, thereby preventing heat transfer between the condenser portion and the evaporator portion when the design temperature is reached or exceeded.

U.S. Patent 10,215,440

Download Patent (PDF)

A heat exchanger and method which is able to perform in different seasons. The heat exchanger has an upper header and a lower header. Multiple heat pipes extend between the upper header and the lower header, with each of the multiple heat pipes having an evaporator section at one end and a condenser section at the opposite end. The direction of heat flow through the multiple heat pipes is variable depending on ambient air conditions applied to the heat exchanger. A pump is provided in fluid communication with the upper header and the lower header. The pump operates when the heat exchanger is operating in a second mode in which the
evaporator section is located above the condenser section, and the pump is disabled when the heat exchanger is operating in a first mode in which the condenser section is located above the evaporator section.

U.S. Patent 10,034,403

Download Patent (PDF)

A card retainer device for securing a card module in a channel of a chassis. The card retainer device includes wedge members which have main portions with integrated brackets integrally attached to the main portions, the integrated brackets form first L-shaped brackets which engage walls of the chassis, surfaces of the card module or a combination thereof. The L-shaped brackets provide bearing surfaces which reduces binding and wear when the card retainer device secures the card module in the channel of a chassis and enhances the conductance of heat through the card retainer device. The wedge members provide heat transfer paths between the card module and the chassis. Mating surfaces of mating wedge member interfaces have compound angles that produces an applied force orthogonal to a flange of the conduction card that is greater than the force applied parallel to the flange of the conduction card.

U.S. Patent 9,952,000

Download Patent (PDF)

A heat pipe assembly that includes at least one axial groove heat pipe and at least one porous media heat pipe. The porous media heat pipe may be embedded into a flange of the axial groove heat pipe, or embedded into a wall of the axial groove heat pipe, or embedded into another bore of the axial groove heat pipe. The evaporator of the at least one porous media heat pipe may be located remotely and can accept a high heat flux, while a condenser of the at least one porous media heat pipe is attached to the axial groove heat pipe.

U.S. Patent 9,879,663

Download Patent (PDF)

A multi-phase pump system and method that directs incoming two-phase flow into a fixed cylinder that contains a vortical flow. The system includes a momentum-driven, vortex phase seperator, the phase seperator accepting liquid-gas flows at any ratio from all liquid to all gas. The pump system also includes a liquid prime mover; a gas prime mover; and a control system. The vortical flow is driven by injecting the two-phase or another fluid stream tangent or approximately tangent to the curved surface of the cylindrical chamber. Inertial forces generated within the vortical flow drive a buoyancy-driven separation process within the cylindrical chamber. Single-phase prime movers are then used to pump the separated phases to a higher pressure.

U.S. Patent 9,618,275

Download Patent (PDF)

A heat pipe with a capillary structure that consists of heat conductive capillary grooves in the condenser region that meet with a porous wick in the evaporator section. The embodiments include several structures of the interface at the junction of the porous wick and the capillary grooves.
One such interface is a simple butt joint. Others have interlocking shapes on the wick and the grooves such as parts of the wick that fit into or around the grooves.

U.S. Patent 9,599,408

Download Patent (PDF)

An evaporator for a loop heat pipe with high input heat transfer. The heat transfer is attained by constructing a heat pipe on the loop heat pipe evaporator heat input surface. The heat pipe then distributes the heat from limited input areas over the entire surface of the loop heat pipe evaporator, and that entire evaporator surface functions as the loop heat pipe heat input area as opposed to limited smaller areas into which the heat usually enters.

U.S. Patent 9,595,726

Download Patent (PDF)

Fuel reforming processes and systems are disclosed. The fuel reforming process includes providing a fuel reformer, the fuel reformer comprising a reaction zone configured for exothermic partial oxidation to generate reformates and a heat exchanger extending from the reaction zone, the heat exchanger configured to expel the reformates through a reformate path and receive fuel-rich reactants through a fuel path, generating the reformates by the exothermic partial oxidation of the fuel-rich reactants within the reaction zone, heating the fuel-rich reactants in reaction zone with the heat exchanger by heat from the reformates in the reformate path. The process is energetically self-sustained and operates without a catalyst. The fuel reforming system includes the fuel reformer with a spiral heat exchanger and a component capable of operation with the reformates and incompatible with combustion products, such as a fuel cell.

U.S. Patent 9,578,781

Download Patent (PDF)

An enclosure and method for housing electrical components. The enclosure includes walls provided about the electrical components, the walls having poor thermal conductivity. At least one thermal transport device extends through at least one respective wall. The at least one thermal transport device has a first portion which is positioned within the enclosure, a second portion which is positioned outside of the enclosure and a transition portion which connects the first portion to the second portion. The at least one thermal transport device has a high effective thermal conductivity and provides a high thermal conductivity path for heat energy to pass from within the enclosure to outside the enclosure.

U.S. Patent 9,466,551

Download Patent (PDF)

The apparatus is a heat transferring clamp with a heat pipe connecting the clamp’s stationary base part to each moveable clamping part. A connecting heat pipe section between the heat pipe sections in the base part and each clamping part is flexible enough to permit both the required clamping and unclamping movements of the clamping part. The heat pipes thereby provide a superior heat transfer path between a clamped circuit board or other device and an available heat sink.

U.S. Patent 9,212,327

Download Patent (PDF)

A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.

U.S. Patent 9,204,574

Download Patent (PDF)

A vapor chamber structure which locks the upper planar plate lid to the lower planar plate base without the need for brazing and prevents distortion of the surfaces from internal pressure in the chamber. The basic structure has parallel rows of latching structures on the interior surfaces of the upper planar plate lid and the lower planar plate base. Each row of latching structures has a cross section in the shape the letter “L” with the top of the “L” attached to the interior surface of the lid so that the horizontal sections of the “L”s face the lower planar base plate when the chamber is assembled.

U.S. Patent 8,210,506

Download Patent (PDF)

The invention is a heat exchanger that transfers heat directly between fluids which are in direct contact with each other rather than being separated by a heat conductive wall. Gas and liquid exchange heat when the gas is moved into and through a mixing chamber, and is directed to form a high speed, forced vortex gas flow. The liquid is sprayed into the mixing chamber to form droplets traveling with and mixing with the vortex gas flow. As the gas and liquid droplets move through the mixing chamber together in the vortex flow, they exchange thermal energy by direct contact. The mixing chamber length is designed so that the gas and the liquid droplets approach thermal equilibrium as the gas-liquid mixture moves into a separation chamber. Within the separation chamber, the centrifugal force of the continuing vortex movement of the gas stream seaparates the liquid from the gas stream and forms a layer of liquid on the separation chamber wall. The liquid then moves down along the wall to a liquid outlet, while a baffle plate restricts the interaction of the gas stream vortex with the liquid approaching the outlet.

U.S. Patent 8,002,021

Download Patent (PDF)

The invention is a heat exchanger transferring heat from a small heat source to a moving fluid. The inherent limitation of such a system is that most of the heat transfer to the fluid occurs only in the immediate vicinity of the heat input even though a large surface area heat transfer structure such as fins or small fluid passages is used to enhance the heat transfer within the heat exchanger. The invention adds a heat pipe inside the heat exchanger enclosure and in contact with the heat transfer structure. The heat pipe spreads the incoming heat over a larger part of the surface area of the heat transfer structure and improves the heat transfer to the cooling fluid by furnishing multiple heat transfer locations without adding extra thermal resistance between the heat source and the fluid flow.

U.S. Patent 7,748,436

Download Patent (PDF)

The apparatus is a capillary loop evaporator in which the vapor space is the internal volume of a cup shaped evaporator wick with sidewalls in full contact with the outer casing of the evaporator. Liquid is furnished to the wick through thicker wick wall sections, slabs protruding from the liquid-vapor barrier wick, eccentric wick cross sections, or tunnel arteries. The tunnel arteries can also be formed within heat flow reducing ridges protruding in the vapor space. The tunnel arteries, and can be isolated from the heat source with regions of finer wick to impede vapor flow into the liquid. Tunnel arteries also enable separation of the evaporator and the reservoir for thermal isolation and structural flexibility. A wick within the reservoir aids collection of liquid in low gravity applications.

U.S. Patent 6,990,816

Download Patent (PDF)

The apparatus is a hybrid cooler which includes one loop within which a heated evaporator forms vapor that moves to a condenser because of the vapor pressure which also drives the liquid condensate from the condenser to a liquid reservoir. A second loop is powered by a mechanical pump that supplies liquid from the reservoir to the evaporator and the second loop also returns excess liquid not vaporized to the reservoir. An optional reservoir cooler can be used to assure that the reservoir temperature and vapor pressure are always lower than the temperatures and pressures of the evaporator and condenser.

U.S. Patent 6,948,556

Download Patent (PDF)

A heat transfer loop system includes a primary passive two-phase flow segment with an evaporator, a condenser and a liquid reservoir, and a secondary actively pumped liquid flow segment in which the liquid in the reservoir is drawn by a liquid pump into the evaporator, where a portion of the liquid is vaporized by the heat input and moves into the primary segment while the excess liquid is pumped back to the reservoir. The evaporator consists of a porous wick and one or more liquid arteries encased in the porous wick. The liquid arteries have porous walls to allow liquid phase working fluid to flow into the surrounding porous wick. The liquid arteries have porous walls to allow liquid phase working fluid to flow into the surrounding porous wick. The excess liquid continues to move through the arteries and eventually out of the evaporator and into the reservoir. The porous wick provides sufficient capillary force to separate the liquid inside the arteries and the vapor in the evaporator.