NASA partners with ACT for challenging aerospace welding requirements

Figure 1: Europa clipper spacecraft (artists concept).
Source: NASA/JPL-Caltech

The goal of NASA’s Europa Clipper mission is to assess its habitability by orbiting Jupiter to investigate Europa’s geology, composition, and the water that is suspected to exist under an icy crust on Jupiter’s moon, Europa. Europa possesses the smoothest surface known of any solid object in the solar system. This visible smoothness and apparent youth of Europa’s surface led researchers to the hypothesis that a water ocean exists beneath the icy crust of the surface and could conceivably lead to extraterrestrial life upon the moon. This ocean is expected to cover the moon and would contain more water than all of Earth’s oceans combined.

The Europa mission will use the clipper to do flybys near the moon and collect data from the surface at certain points within the orbit, without actually landing any crafts upon the surface.  It is critical that the clipper is equipped with the best tools possible to collect data during these flybys; NASA has announced 9 named specialty instruments.

NASA has collaborated with ACT engineers on dozens of successful projects over the last 15 years. So, when NASA wanted to work through a welding issue that arose during the design of the Europa Clipper, ACT’s aerospace team was happy to take on the challenge.

Figure 2: modeling image of Europa parts

The flange tubing for a pumped single-phase fluid cooling loop needed to be welded together and both withstand the journey to, and operation in, deep space for an extended period of time. While aerospace welding standards are extreme by nature, this weld joint is critical to systems operation, and thus requires standards that are not commonly seen by NASA’s aerospace partners.

Previous bi-metallic welding of heat exchanger components for aerospace have been successfully produced by ACT personnel in the past, however, the latest work required much more detailed inspection and qualification of the weld quality– examination that is beyond the ability of the human eye, and therefore, must be completed at the microscopic level.

“This project required aluminum to bimetallic welding, which is a unique and uncommon welding process for most of the world’s welding needs.” Said Brent Bennyhoff, Aerospace Certified Welding Technician at ACT. He further explained that “it’s challenging because when welding a temperature-sensitive component that has materials of different CTE’s (coefficient of thermal expansion), extra measures are needed in the process to ensure no damage occurs to the bimetallic fitting’s functionality.”

Figure 3: Weld inspection via radiography at ACT

ACT’s in-house radiography capabilities allow a project such as this to be quickly x-rayed and evaluated for requirements. “We’re proud to support NASA flagship missions by providing flight-critical hardware. In a mission such as the Europa Clipper, all aspects of a complex spacecraft need to operate as expected; we’re proud our hardware is being relied upon for a mission undertaking such a significant scientific milestone.” Said ACT’s Ryan Spangler, Lead Engineer of Defense and Aerospace Products about this challenging welding project.

Ryan’s team works closely with the NASA teams across many locations as well as with ACT’s Research & Development teams, who are collaborating on a NASA Phase II contract on another portion of the Europa mission. What aerospace challenges can our thermal engineers and technicians help you tackle?

Read more about NASA’s mission to Europa!



Have a Question or Project to Discuss?