High Temperature Water-Titanium Heat Pipes for Spacecraft Fission Power

Rebecca Hay1 and William G. Anderson1

1Advanced Cooling Technologies, 1046 New Holland Ave. Lancaster, PA 17601
717-295-6104; Bill.Anderson@1-act.com

Abstract. NASA is examining small fission reactors for future space transportation and surface power applications. The Kilopower system will use a nuclear reactor to supply energy to Stirling convertors to produce electricity. Titanium/water heat pipes will be used to carry the waste heat from the Stirling to a radiator, where the heat is rejected. Most current water heat pipe designs are for surface fission power, and use gravity aided heat pipes (thermosyphons). The Kilopower system will be designed to operate in space, which will require a different heat pipe design than the thermosyphons used in surface applications. The heat pipe design needs to support the Kilopower system through four different operating conditions: operation in space, with zero gravity; operation on earth, with a slight adverse orientation, to estimate performance in space; ground testing, with the heat pipes operating gravity aided; and launch, with the evaporator elevated above the condenser. During the last two conditions, vertical ground testing and launch, the heat pipe wick will deprime and will need to re-prime for operation in space operation after launch. Two heat pipe wick designs were identified as readily repriming after depriming: grooved wick heat pipes and self-venting arterial heat pipes. In the grooved wick design a screen or sintered wick is required in the evaporator during start-up. This hybrid-wick design is necessary to supply liquid to the evaporator during vertical operation. Two heat pipes were designed, fabricated and tested: a self-venting arterial wick and a hybrid groove-screen wick design. This paper presents the design of the two heat pipes and test results which were used to evaluate which heat pipe wick design is better suited for the Kilopower system.

Keywords: Kilopower, heat pipe, hybrid wick, self-venting arterial wick

INTRODUCTION

NASA is currently examining small fission power reactors, such as the Kilopower, which aims to provide roughly 1 kW of electric power. Kilopower plans to use alkali metal heat pipes to supply power from the reactor to a series of Stirling convertors, and titanium/water heat pipes to remove the waste heat from the cold end of the convertors. Previous water heat pipe designs for space fission power are not suitable for Kilopower, because they were designed as gravity aided heat pipes (thermosyphons) for surface fission power and are not suitable for space. Grooved heat pipe designs that will work in space have also been developed but the grooved wick is unable to prime the evaporator in a vertical orientation, which is necessary for ground testing of Kilopower. Advanced Cooling Technologies, Inc. (ACT) developed heat pipes with two different designs that are suitable for Kilopower: a hybrid grooved/screen wick and a self-venting arterial wick. The heat pipe design needs to support the Kilopower system through four different operating conditions: operation in space, with zero gravity; operation on earth, with a slight adverse orientation, to estimate performance in space; ground testing, with the heat pipes operating gravity aided; and launch, with the evaporator elevated above the condenser.

Kilopower Background

NASA is examining small fission reactors for future space transportation and surface power applications (Mason and Carmichael, 2011). The Fission Surface Power System is designed to operate from 10 to 100 kWe while current Radioisotope Power Systems operate below 1kWe. The Kilopower system would address the power gap between current RPS and FPS. A nominal Kilopower design is shown in Figure 1 [1]. The nuclear reactor supplies energy to
Brayton (or Stirling) convertors to produce electricity. Titanium/water heat pipes carry the waste heat to a radiator, where the heat is rejected.

Previous spacecraft heat pipe designs have neglected ground testability, and assumed a grooved wick. The Kilopower heat pipes must accommodate four different operating conditions: Operation in space, with zero gravity. Liquid is returned from the condenser to the evaporator by capillary forces in the wick; Operation on earth, with a slight adverse orientation, to estimate performance in space. The heat pipe is operated with the evaporator slightly oriented above the condenser. The adverse orientations are typically 0.25 and 0.5 cm; Ground testing, with the heat pipes gravity aided. The heat pipes will deprime in this orientation. Liquid is returned to the evaporator by gravity; see Figure 2b; Launch, with the evaporator elevated above the condenser. The heat pipes will deprime in this condition; see Figure 2a.

The orientation of the heat pipes during ground testing is shown in Figure 2b. The reactor (not shown) is located below the Stirling convertors. The pipes are orientated with the evaporator (by the Stirling engines) below the condenser (radiator). Water vapor travels from the evaporator to the condenser, releasing heat. During these tests, the grooves and self-venting arteries will deprime, as discussed below.

The reactor (not shown) is located below the Stirling convertors. The pipes are orientated with the evaporator (by the Stirling engines) below the condenser (radiator). Water vapor travels from the evaporator to the condenser, releasing heat. During these tests, the grooves and self-venting arteries will deprime, as discussed below.

A wick in the evaporator is required during start-up, to supply liquid to the evaporator before liquid drips back down from the condenser.

When the Kilopower system is prepared for launch, the system will be orientated such that the evaporator will be above the condenser (Figure 2a), causing the pipe to deprime. Once in space the pipe will need to reprime and begin working. The hybrid-wick heat pipe is known to reprime spontaneously.

Heat Pipe Wicks

The length of the Kilopower titanium/water heat pipes can be up to several meters. There are four types of wicks that carry significant power over these long distances in space: Arterial heat pipes with sintered powder or screen wicks; Grooved heat pipe wicks; Hybrid Grooved Screen wicks; Russian self-venting arterial heat pipes. Arterial and grooved pipes are not suitable for this application. The arterial pipes will de-prime during testing and during launch and it is not possible to reliably re-prime arterial pipes. Grooved heat pipe designs that will work in space have also been developed but the grooved wick is unable to prime the evaporator in a vertical orientation, which is necessary for ground testing of Kilopower. The two wicks that can be used for the Kilopower system are the hybrid grooved/screen wick, and the self-ventig arterial heat pipe.

Grooved wicks are the standard wick used in for spacecraft Constant Conductance Heat Pipes (CCHPs) and Variable Conductance Heat Pipes (VCHPs). The benefit of the grooved wick is that it cannot be deprimed by vapor bubbles, since the bubbles can vent into the vapor space. These extruded grooves also have a very high permeability, allowing very long heat pipes for operation in zero-g, typically several meters long. Their only flaw is that they are unsuitable for the evaporator when the heat pipe is tested vertically on the ground. Instead, a hybrid wick is used, with grooved adiabatic and condenser sections, and a screen evaporator wick. The screened evaporator section is necessary for startup after the pipe has been deprimed or frozen.
The second wick design ACT investigated was a self-venting arterial heat pipe developed by Goncharov et al. at Lavochkin in Russia [3]; see Figure 3. Arterial heat pipes are a variation of a heat pipe that utilizes a single artery as well as a screen or sintered wick for liquid return. During operation, liquid condensing in the condenser flows circumferentially in the condenser to the artery. The liquid then flows through the artery to the evaporator, where the sintered (or screen) wick distributes the liquid. The combination of a single artery with a screen wick gives the heat pipe the benefit of a wick with high wick permeability as well as a small pore size and thus a high capillary limit. When the artery is primed (full of liquid), arterial heat pipes can transfer high heat loads over long distances. On the other hand, the heat pipe fails if the artery is de-primed by non-condensible gas generation or vapor generation in the artery. These standard arterial heat pipes are not suitable, since the arteries will definitely deprime during launch.

To eliminate the de-priming problems seen in standard arterial heat pipes, self-venting arterial heat pipes use small venting pores that are located in the evaporator section of the heat pipe. If vapor or non-condensable gas (NCG) is introduced into the single artery the typical de-priming that would be experienced in a standard arterial heat pipe can be avoided due to the venting pores. The vapor blockage will travel through the artery and into the evaporator where the venting pores are located. The design eliminates the single point failure nature of previous arterial heat pipes.

HEAT PIPE DESIGN

Two heat pipe configurations were designed: a self-venting arterial wick, with a screen artery and vent holes and a hybrid wick design, with a screened evaporator and grooved condenser. Both heat pipes also incorporated a reservoir on the evaporator which stored any excess fluid charge during vertical operation to minimize the effects of overcharging on test results.

![FIGURE 3. Russian developed self-venting arterial heat pipe with a screen wick](image)

![FIGURE 4. Performance Predictions for a 0.5 in OD, 40 in Hybrid Wick Heat Pipe](image)
Hybrid Screen – Grooved Wick Design
The hybrid heat pipe design used 1.27 cm outside diameter titanium tube with 0.089 cm walls. Capillary, entrainment, sonic and flooding limits were calculated for the 1.27cm OD hybrid wick heat pipe design. The heat pipe needed to function 0.508 cm against gravity for ground testing, which was accounted for in the performance calculations. The performance predictions for the 1.27 cm OD, 0.99 m long hybrid wick heat pipe can be seen in FIGURE 4. The designed heat pipe can carry a maximum power of 375W at the target temperature of 400K.

The hybrid heat pipe was made from four 25.4 cm grooved sections and one 12.7 cm screened section. The tube section has four wraps of 150 mesh titanium screen. The four groove sections were machined from solid titanium rod using electric discharge machining (EDM).

Self-Venting Arterial Wick Design
The design for the self-venting arterial pipe used a 1.27 cm outside diameter titanium tube with 0.089 cm walls, the same design as the hybrid wick heat pipe. The capillary, entrainment, sonic and flooding limits were also calculated for the 1.27cm OD self-venting arterial heat pipe design. The self-venting arterial heat pipe will need to function at 0.508 cm against gravity for ground testing, which was accounted for in the performance calculations. The performance predictions for the 1.27cm OD, 1.02 m long self-venting arterial heat pipe can be seen in FIGURE 5. The designed heat pipe can carry a maximum power of 390 W at the target temperature of 400K.

![FIGURE 5. Performance Predictions for a 0.5 in. OD, 39 in. Long Self-Venting Arterial Wick Heat Pipe](image)

The artery has one screen wrap on along the edge bounded by the pipe and two screen wraps on all other edges. The screen along the perimeter of the pipe outside of the artery has a total of three screen wraps. The pipe was fabricated from a single 40 in (0.99 m) tube with 0.035 in (0.089 cm) walls. Included in the design is a small reservoir below the evaporator. The reservoir is used to hold the working fluid during vertical operation and freezing.

TEST RESULTS
The test set up was designed so that all tests could be performed with little or no modifications during testing. The heat pipe was mounted to a tilt table which allowed for testing at any angle. Power was applied to the evaporator using an aluminum heater block with four cartridge heaters. The heat pipe condenser was cooled using compressed air forced through a tube around the pipe. Both assembled heat pipes were instrumented according to the thermocouple map shown in FIGURE 6. Two thermocouples measured the reservoir temperature. The temperature
along the heat pipe was measured every 5 in., with two thermocouples at each location for redundancy. An additional thermocouple is located on the outside of the heater block, which is labeled evaporator in the results.

![FIGURE 6. Thermocouple Map for the Self-Venting Arterial Heat Pipe](image)

Self-Venting Arterial Pipe Power Test Results

To evaluate the operation of the heat pipe in space, the self-venting arterial heat pipe was tested at 0.25 cm and 0.5 cm against gravity, with the results from the 0.5 cm test presented here in FIGURE 7. The self-venting heat pipe dried out at 225 W, which was about half of the predicted 425 W from the model but 100 W more than the required power. The heater block temperature was also offset from the pipe temperature for most of the testing. This can be attributed to thermal resistance between the heater block and the heat pipe evaporator, which increased with temperature due to the CTE mismatch between the aluminum block and titanium heat pipe.

![FIGURE 7. Test Results for the Self-Venting Arterial Heat Pipe at 0.5 cm Adverse](image)

Hybrid Screen-Groove Heat Pipe Power Test Results

The hybrid heat pipe was also tested at 0.25 and 0.5 cm against gravity to evaluate space performance. The results for the 0.2 in. adverse test of the hybrid heat pipe are shown in FIGURE 8. At 0.2 in adverse the hybrid heat pipe started up and reached steady state at each power increment until 150 W, when the heater block temperature became unsteady. The heat pipe temperatures also started to fluctuate more than had been seen in previous tests, with the fluctuations matching those seen in the heater block temperature. At this point the vapor temperature control was reduced from 125°C to 90°C, which produced stable results. This is shown at the beginning of the data set in FIGURE 8. After the temperatures reached steady state, the temperature was increased while maintaining a constant power until the vapor temperature was again at 125°C. At this point the temperatures continued to be unstable for about 4000 seconds before reaching steady state, which continued until dry out at 475 W. ACT suspects this behavior is due to the pipe being undercharged, which in this case seems to be caused by fluid being trapped in the
reservoir. The hybrid heat pipe carried 475 W of power, which was higher than both the predicted 375 W and the required 125 W.

FIGURE 8. Hybrid Groove-Screen Heat Pipe 0.5 cm Adverse Test Results

Vertical Orientation and Re-priming Tests

Both heat pipe designs must operate as thermosyphons and re-prime. To test re-priming of the self-venting artery the pipe was first tested vertical and allowed to de-prime. The heat pipe was then be turned horizontal and tested to demonstrate re-priming. The hybrid heat pipe was also tested as a thermosyphon to validate the reservoir and evaporator design. The screened evaporator was necessary to ensure there was a fluid supply during start up in the evaporator and the reservoir held the excess fluid inventory to prevent pool boiling.

FIGURE 9. Self-Venting Arterial Heat Pipe Thermosyphon Mode Test Results

Self-Venting Arterial Heat Pipe Vertical Orientation and Re-priming Tests

The self-venting heat pipe will need to operate as a thermosyphon for ground testing. **FIGURE 9** shows the test results from the vertical orientation test. The heat pipe showed no pool boiling or dry-out in the evaporator,
indicating that the reservoir and evaporator were operating as expected. The power test went up to 500 W, which was the limit for cooling with the current air cooled test set up. Throughout the test the temperature of the evaporator block spiked with increases in power, due to the thermal resistance between the heater block and the heat pipe.

After the self-venting arterial heat pipe thermosyphon mode test, the heat pipe was left in a vertical orientation overnight. For the re-priming test the heat pipe was turned to 0.5 cm against gravity and power was immediately applied. The results of this re-prime test are shown in FIGURE 10. The heat pipe had no noticeable problems with startup and the performance matched the power test conducted before de-priming. The re-primed heat pipe dried out at 225 W, which was the same performance seen before de-priming.

FIGURE 10. Self-Venting Heat Pipe Re-prime Test at 0.5 cm Adverse

Hybrid Screen-Groove Thermosyphon Test

The hybrid screen-groove heat pipe was tested as a thermosyphon to evaluate the screened evaporator during start up and normal operation. The results from the hybrid heat pipe thermosyphon test are shown in FIGURE 11. As in all the other tests, the heater block temperature is higher than the heat pipe temperature, due to the thermal resistance between the two. While operating as a thermosyphon the hybrid heat pipe showed no evidence of start-up issues or pool boiling during operation. The heat pipe was able to carry 500 W, at which point the cooling was becoming inadequate so the test was stopped.

FIGURE 11. Hybrid Heat Pipe Thermosyphon Test Results
Freeze – Thaw Testing

ACT conducted freeze-thaw testing on both heat pipe designs. This testing was used to evaluate the response of the two wick designs to a freeze-thaw cycle. The freeze-thaw testing included short term freezing vertically with thawing at a slight adverse elevation, to demonstrate that the heat pipe can restart in space.

Hybrid Groove-Screen Heat Pipe Freeze-Thaw Test

The hybrid heat pipe was subjected to one freeze-thaw cycle. The heat pipe was placed in a freezer overnight in a vertical orientation so the fluid would freeze in the evaporator and reservoir. The heat pipe was then placed in the test stand at 0.25 cm adverse and heat was applied. The power was ramped up just like the previous power tests and stopped at the nominal power of 125 W. During start up the heat pipe showed no problems with the liquid supply to the evaporator and showed the expected behavior as the pipe came up to the nominal temperature of 125°C.

![FIGURE 12. Hybrid Grooved-Screen Heat Pipe Freeze-Thaw Test Results](image1)

Self-Venting Arterial Heat Pipe Freeze-Thaw Test

The self-venting arterial heat pipe was also subjected to a freeze-thaw cycle. Like the hybrid heat pipe, the self-venting arterial heat pipe was placed in a freezer overnight in a vertical orientation so the fluid would freeze in the evaporator and reservoir. The heat pipe was then placed in the test stand at 0.25 cm adverse and heat was applied.

![FIGURE 13. Self-Venting Arterial Heat Pipe Freeze-Thaw Test Results](image2)
The power was ramped up just like the previous power tests and stopped at the nominal power of 125 W. During start up the heat pipe showed no problems with the liquid supply to the evaporator and showed the expected behavior as the pipe came up to the nominal temperature of 125°C. Each thermocouple was initially at 0°C and as the pipe thawed the temperature increased rapidly in order from the evaporator to the end of the condenser. Once the pipe was completely thawed and operating at 125°C it showed the same behavior seen during the initial power tests.

Conclusion

The two heat pipe designs were successfully tested in all modes of operation: against gravity tests, vertical and re-priming tests and freeze-thaw testing. While the self-venting arterial heat pipe successfully carried more than the required 125 W at both adverse elevations, the heat pipe only carried about half of the predicted power. This indicates there was either a problem with the manufacturing of the heat pipe or with the original model. ACT is still evaluating possible causes. The hybrid heat pipe successfully carried the required 125 W at both adverse elevations and carried more power than the model predicted. During the test at 2.5 mm adverse elevation the heat pipe operated very smoothly, quickly reaching steady state and displaying a clear dry out at about 490 W. At 5 mm adverse, the heat pipe did eventually operate smoothly after displaying unsteady temperatures, especially in the heater block temperature. Based on the performance difference between the 2.5 mm and 5 mm adverse cases, ACT believes that at 5 mm the pipe may be undercharged due to fluid becoming trapped in the corners of the reservoir. The vertical and re-priming tests showed that both wick designs are suitable for Kilopower, successfully operating as a thermosyphon for ground testing and in the self-venting case, able to re-prime with no change in performance. Both pipes also underwent a freeze-thaw cycle with no change in performance. Further research and testing is needed for both heat pipe designs to address the issues seen during the adverse testing.

References

