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The enthalpy-porosity method is widely used in solving solid-liquid phase change problems that involve
convection in the melt; however the influence of the required mushy zone parameter on the melting pro-
cess has been largely overlooked. In this paper, further investigation of the mushy zone parameter is pre-
sented. The enthalpy-porosity method is the default model in Fluent for melting simulations. A
comprehensive discussion of previously reported mushy zone parameter values is presented with a com-
parison to numerical and experimental results. In this paper, based on experimental validations of melt-
ing times, it is found that mushy zone parameters can be optimized based on relevant driving
temperature differences. And despite the fact that the model cannot capture bulk solid sinking behaviors,
numerical solid sinking behaviors by Fluent are still widely reported in the literature. Explanations and
supporting numerical analysis are given for this seeming contradiction. Finally, an analytic solution for
unconstrained sinking is developed. With the introduction of a tuning parameter to modify the viscosity
of the mushy region in the bottom liquid layer, good agreement between the analytical model and exper-
imental results is achieved. A linear correlation for the tuning parameter based on driving temperature
differences is given.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The enthalpy-porosity method [1], which is based on fixed
grids, is the most popular modeling method for solid-liquid phase
change problems that involve convection in the melt. It is the
default method employed in the commercial computational fluid
dynamics (CFD) code ANSYS Fluent. The enthalpy-porosity tech-
nique treats the mushy region (partially solidified region) as a por-
ous medium. The porosity is set equal to the liquid fraction of the
region. The fully solidified region has zero porosity and the phase
change material (PCM) velocity approaches zero. To capture the
mushy zone behavior, a source term is used to modify the momen-
tum equation in the mushy region. The source term has the form
[2]:

S ¼ C
ð1� aÞ2
ða3 þ �Þ v

!
; ð1:1Þ
where � is a small number (0.001) to prevent division by zero, a is
the PCM liquid volume fraction, v! is velocity field and C is the
mushy zone parameter. In the liquid region ða ¼ 1Þ, the source term
has a zero value and the momentum equation describes the actual
fluid velocities. In the mushy zone region, the moment equation
approximates the Darcy law. A small C allows for significant flow
and a large value suppresses the fluid velocities. In the solid region
ða ¼ 0Þ, the parameter C effectively forces the velocities to zero.
However, when C is too small, i.e. C ¼ 102, the solid PCM is treated
like a highly viscous fluid. When C is too large, i.e. C ¼ 108, the solid
remains suspended in the liquid contrary to experimental findings
that demonstrate the sinking of the solid PCM [3]. It is clear that
the default enthalpy-porosity method within ANSYS Fluent [2] is
incapable of modeling the bulk solid sinking behavior.

The influence and treatment of the mushy zone parameter on
melting processes within the enthalpy-porosity method has been
largely overlooked, despite the fact that the method is widely
employed. Kumar and Krishna [4] numerically studied melting in
a 2-D rectangular cavity by using the CFD code ANSYS Fluent
16.0. It was observed that the mushy zone constant had significant
influence on the thermohydraulics of the melt PCM. As a result, the
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Nomenclature

S a source term to modify the moment equation
C mushy zone parameter
v! velocity field, m=s
D diameter of the cylinder, cm
ws thickness of the cylinder bottle wall, mm
wb thickness of the cylinder bottle bottom, mm
std standard deviation, s
dT driving temperature difference, �C
H height, m
R radius of solid PCM for the analytic solution, m
h remaining height of solid PCM during analytic melting,

m
r shrinking radius of the solid PCM, m
T temperature, �C
uðrÞ flow velocity in the bottom liquid layer, m=s
PðrÞ pressure distribution in the bottom liquid layer, Pa
z height variable, m
M tuning parameter for the viscosity in the mushy zone

liquid layer
g acceleration due to gravity, m=s2

Lf latent thermal energy of PCM, J=kg
Le virtual latent thermal energy of PCM, J=kg
Cp heat capacity of PCM, J=kg K

k conductivity of PCM, W=m K
X liquid fraction of PCM
V volume, m3

t time, min
x width of a drawn vector box, cm
y height of a drawn vector box, cm

Greek letters
2 a small number to prevent division by zero
q density of PCM, kg=m3

l viscosity, Pa � s
d bottom liquid thickness, m
a liquid volume fraction of PCM

Subscripts
l liquid state
s solid state
i initial
m melting
w wall
c cylinder
pcm phase change material
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melt fraction curve depends sensitively on the mushy zone
parameter.

Assis et al. [5] studied melting in a spherical shell both experi-
mentally and numerically. It was found that C ¼ 105 showed solid
sinking behavior in the simulations and fitted well to the experi-
mental results. A commercial PCM, RT27, was used in his study
and its viscosity is around 0.0035 Pa � s [6]. Hosseinizadeh et al.
[7] also studied unconstrained melting in a spherical shell using
n-octadecane, whose viscosity is 0.0039 Pa � s. It was also con-
firmed that C ¼ 105 gave good agreement between the numerical
and experimental results. Dari et al. [8] numerically studied uncon-
strained melting in a rectangular enclosure. With the mushy zone
parameter C set at C ¼ 105, solid sinking behaviors were observed.
After Assis’s work [5], many researchers [8–13,19] mentioned
using a value of C ¼ 105 for the mushy zone parameter when mod-
eling PCM melting processes by the enthalpy-porosity method [1].

Mushy zone constants with some other values have also been
reported in the literature. Tiari et al. [14] reported that with a
mushy zone value C ¼ 2:5� 106 the numerical results showed
good agreement with previous experimental works. The PCM used
in Tiari’s work [14] is KNO3, whose viscosity is 0.00259 Pa � s.
Elbahjaoui and Qarnia [15] numerically studied melting of a paraf-
fin wax (P116) dispersed with Al2O3 nanoparticles in a rectangular
storage unit. The viscosity of P116 is 0.0013 Pa � s. A mushy zone
value C ¼ 1:6� 106 was used, which was reported to have good
agreement with experimental results in the literature.

However, with these parameter values, disagreement between
numerical and experimental results was also reported in the liter-
ature. Shmueli et al. [16] simulated PCM (RT27) melting in a verti-
cal cylindrical tube, which was insulated at the bottom and
exposed to air at the top and heated at the tube wall. The effect
of the mushy zone parameter C on the simulation results was
investigated. It was found that with C ¼ 105, the resulting melting
time by the simulation was about 2.5 times shorter than the exper-
imentally measured time under the same conditions. A concern
should be raised because the discrepancy could not be overcome
by any changes of the mushy zone parameter and also material
properties (such as the density and viscosity of the liquid phase)
[16]. What’s more disturbing is that in Assis’s work looking at
the spherical geometry [5], with the same PCM (RT27), good agree-
ment between the numerical and experimental results was
reported.

Thus a further look into the two cases is necessary. The most
obvious differences between the cases are the geometry and the
boundary conditions. For both of the cases, the PCM would sink
towards the bottom of the container during the experiments,
which will effectively reduce the thermal resistance between the
solid PCM and the bottoms of the containers. However, for the ver-
tical cylinder case [16], the bottom was insulated, so the solid sink-
ing phenomenon would have small contribution to heat transfer
enhancement. While for the sphere case [5], it was heated around
the spherical shell, so the solid sinking phenomenon accelerated
the melting process as demonstrated by the experimental melting
patterns [5]. It can be argued that with the mushy zone parameter
set to C ¼ 105, the source term (Eq. (1.1)) generates suitable level
of convection enhanced heat transfer in the liquid PCM, which
agrees with the experiment. However, for the vertical cylinder case
[16], one presumed conclusion is that the source term—with any
value of the mushy zone parameter—always creates more convec-
tion in the liquid PCM than the real experimental situation when
the solid sinking has a small role in enhancing the heat transfer.

Moreover, it is mentioned that the melting model in Fluent does
not have the mechanism to model solid sinking. Ghasemi and
Molki [17] numerically studied unconstrained melting in square
cavities by a fixed-grid enthalpy formulation. In their work, to
account for solid sinking, besides the natural convection source
term in the momentum equation, the bulk solid sinking induced
convection was expressed as a separate source term, which cap-
tures the sinking of the solid phase. It was found that when the
sinking source term was set to zero, natural convection can also
cause the solid to sink as the convection in the liquid phase can
exert a downward shearing force on the solid. The two sources
terms can achieve similar PCM melting patterns. However, studies
[5,7,8] without such a source term also demonstrated that with a
suitable mushy zone parameter value, solid sinking patterns were



Fig. 1. Schematic diagram of the experimental setup.

Table 1
Samples.

Cases Hpcm (cm)

#1 (10 g) 1.6237
#2 (20 g) 3.2474
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observed by numerical analysis. Thus a suitable mushy zone
parameter value is needed to match the numerical results by Flu-
ent with the experimental ones [5,7]. This further concludes that
the mushy zone parameter plays a vital role in modeling PCM
melting by the enthalpy-porosity method [1]. It needs to be cali-
brated by experimental results for reliable numerical analysis.

From above discussions, further study on the mushy zone
parameter is needed. In this paper, an experimental study of
PCM melting in a vertical cylinder that is heated in a water bath
is carried out. The PCM used in this paper is Calcium Chloride hex-
ahydrate ðCaCl2 � 6H2OÞ, whose viscosity is 0.01 Pa � s, which is
much larger than that of paraffin. Then numerical simulations with
different values of the mushy zone parameter are compared to the
experimental results. On the one hand, this study is used to con-
firm whether the numerical solution can match the experimental
results when heat transfer is enhanced by the solid sinking behav-
ior. On the other hand, it is desired to find a suitable mushy zone
parameter value, which can be applied to PCMmelting in a vertical
cylindrical geometry with solid sinking phenomenon, as in the pre-
vious studies [5,7] that were based on a spherical geometry. Fur-
thermore, whether the numerical model can capture the sinking
phenomenon is discussed by comparing the numerical results with
the experimental ones.

Finally, as the numerical method is incapable of modeling the
sinking phenomenon, a modified analytic solution based on the
bulk solid sinking phenomenon was developed. During earlier
works, Moore and Bayazitoglu [20] studied contact melting of a
PCM within a spherical enclosure. Their mathematical model was
confirmed by experimental evidence. The contact melting process
of solid materials on circular and rectangular heated plates was
analyzed by Webb and Viskanta [21]. Chen et al. [22] developed
an analytic solution for close-contact melting in a vertical tube
with isothermal heating both at the side wall and the bottom.
Close-contact melting of a PCM inside a heated rectangular capsule
was also analytically studied by Chen et al. [23]. Yoo [24] analyti-
cally studied unsteady close-contact melting on a plate and
showed that initially the melt height is far from constant. Kozak
et al. [25] studied close-contact melting in vertical annular enclo-
sures both numerically and analytically. Rozenfeld et al. [26] stud-
ied close-contact melting in a horizontal cylindrical enclosure with
longitudinal plate fins. More recently, Zhao et al. [27] theoretically
and experimentally studied close-contact melting in a rectangular
cavity at different tilt angles. In this paper, considering the analytic
model by Chen et al. [22] tends to under predict the melting time, a
tuning parameter that can effectively controls the thickness of the
bottom liquid layer is introduced in the development of the solu-
tion. With this tuning parameter, the analytical solution achieves
good agreement with the experimental results.

The content of this paper is organized as follows. In Section 2,
the experimental setup is introduced. In Section 3, numerical stud-
ies by Fluent are performed along with the determination of the
mushy zone parameters to match the experimental results. Sec-
tion 4 presents a new analytic solution. Section 5 summarizes
the conclusions.
2. Experimental setup and results

In this paper, Calcium Chloride hexahydrate ðCaCl2 � 6H2OÞ was
used for the experimental study of unconstrained melting. Fig. 1
shows the schematic of the experimental setup. It primarily con-
sists of a controllable water bath, a GoPro camera, a light and a
glass tube containing the PCM. During the experiment, the PCM
tube is vertically suspended in the water bath. The GoPro is set
to acquire a photo every 10 s, which allows the final melting time
of one sample to be recorded. Before the experiment, the sample
was immersed in a separate water bath overnight with its temper-
ature held at 24 �C. This temperature will be the initial tempera-
ture to be used in the numerical analyses.

Two samples (10 g & 20 g) were used to record the melting
time. The height values in Table 1 are calculated based on the
two weights and inner tube diameter. Multiple samples were pre-
pared with the same weight. In addition, melting tests of these
samples were repeated under three different driving temperature
differences (10 �C, 15 �C and 20 �C). Table 4 shows the melting
times, along with mean values and standard deviations ðstdÞ of
the two sample weights under the three temperature differences.
Fig. 2 shows the melting patterns of one case at different times.
It can be seen that the solid shrinking happened much faster along
the height than in the radial direction, which clearly demonstrate
solid sinking can efficiently promote melting. Fig. 3 summarizes
the experimental results.

3. Numerical study and discussions

Numerical studies were carried out using the commercial soft-
ware ANSYS 16.0/Fluent. The ‘volume-of-fluid’ (VOF) model is used
to describe the PCM-air system in the Fluent software. The VOF
model treats two or more fluids as non-interpenetrating phases.
To simulate the melting process, Fluent uses an enthalpy-
porosity formulation by Voller et al. [2,18]. Extensive descriptions
of the numerical models can be found in the literature [5,20]. Thus
mathematical description is omitted in this paper.

Fig. 4 shows the computational domain to be simulated in Flu-
ent, along with its dimensions in Tables 1 and 2. Constant temper-
ature was applied to both the bottom and the side wall of the
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Fig. 2. Melting patterns under 20 �C temperature differences for Case # 2.
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cylinder. The top of the cylinder is closed and is adiabatic. The
properties of the glass tube are shown in Table 3. Properties of
CaCl2 � 6H2O used in the simulations are shown in Table 5. The
melting temperature range is (301–303 K). In the numerical simu-
lations, as the difference of the specific heats of the solid and liquid
phases is small, an average value 2145 J=kg K is used, which makes
it easier to be implemented in the analytic solution. Piecewise lin-
ear functions were used for both the density and thermal conduc-
tivity (Table 6).

In the setting of the numerical model in Fluent, an explicit
scheme was chosen for the volume fractions of air and PCM and
a sharp interface between them was selected; the cutoff criterion
is 1� 10�7 and the Courant number is set to 0.25. The SIMPLE algo-
rithm was used and second order upwind spatial discretization
was chosen for both the momentum and energy equations. A
quadrilateral grid structure was used for the mesh. According to
the mesh and time step independence study shown in Fig. 5, an
element size 0.2 mm and a time step of 0.01 s were chosen for
all the following numerical simulations.



Fig. 4. Computational domain of the tube.

Table 2
Tube dimensions.

Hc 9.5 (cm)
D 2.258 (cm)
ws 1.08 (mm)
wb 1.0 (mm)

Table 3
Tube properties.

Density 2235 ðkg=m3Þ
Thermal conductivity 1.1 ðW=m KÞ
Specific heat 800 ðJ=kg KÞ

Table 5
Thermophysical properties of CaCl2 � 6H2O.

Properties Values

Melting temperature 29 (�C)
Density (solid/liquid) 1706/1538 ðkg=m3Þ
Thermal Conductivity (solid/liquid) 1.09/0.546 ðW=m KÞ
Specific heat (solid/liquid) 2060/2230 ðJ=kg KÞ
Latent heat 170 ðkJ=kgÞ
Dynamic viscosity 0.01 Pa � s
Coefficient of thermal expansion 0.0005 K�1

Table 6
Properties used in the simulations.

Temperature (K) 301 302 303
Density ðkg=m3Þ 1706 1622 1538
Conductivity ðW=m KÞ 1.09 0.818 0.546
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Fig. 5. Mesh and time step independence study.
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To estimate the melt fraction throughout the melting process,
images from the GoPro were imported into CorelDraw. CorelDraw
is a vector-based design software package. Since the frames were
taken at 10 s intervals, the time for each frame could be easily
determined. After importing the images into CorelDraw, the
images were scaled to the correct dimensions using the outside
diameter of the bottle. Once scaled, a vector box was drawn over
the solid portion of the PCM. The volume of this solid portion

was calculated as Vs ¼ x
2

� �2py; where x is the width of the drawn
Table 4
Melting time for multiple samples under different temperature differences.

Cases dT (�C) Melting times (s)

1 2 3

#1 10.0 680 700 710
#2 1140 1080 1080

#1 15.0 440 450 480
#2 690 700 720

#1 20.0 360 360 330
#2 510 550 530
box and y is the height of the same box. At t = 0, Vs is assumed
to be equal to 1. All Vs values for t > 0 are referenced to Vs (t = 0).
Three repeated experimental data sets were used to estimate the
liquid fraction during the melting for each case as shown in Figs. 6
and 7. The consistency of the liquid fractions for the same case by
this method is acceptable.

Figs. 6 and 7 show liquid fraction curves of Case #1 with differ-
ent values of the mushy zone constant under 10 �C and 20 �C driv-
ing temperature differences, respectively. It was found that for
dT ¼ 10 �C a mushy zone constant C ¼ 38� 105 gives the best
agreement with the experimental points. For dT ¼ 20 �C, an
4 5 6 mean std

680 610 660 673.33 35.59
1030 990 1000 1053.33 57.15

500 510 520 483.33 32.65
730 740 780 726.67 32.04

320 330 350 341.67 17.22
550 560 490 531.67 27.14
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optimal mushy zone constant is C ¼ 7:5� 105. It seems that for dif-
ferent driving temperature differences, a different mushy zone
constant is needed to match the numerical melting time with the
experiment. This situation is further confirmed in Fig. 8. For
dT ¼ 15 �C, an optimal mushy zone constant is C ¼ 18� 105. It
can be seen that under the same driving temperature difference,
with the same mushy zone constant, the numerical melting time
for Case #2, which has a different mass of PCM and a different
height-to-radius ratio than Case #1, shows good agreement with
the experiments. Thus, it can be concluded that an optimal mushy
zone constant is needed based on driving temperature difference
when using Fluent to simulate melting. However, as indicated by
Fig. 9, there is no strong linear relationship between the driving
temperature difference and the mushy zone constant that is sug-
gested by the experiments. A possible reason for this is that the dif-
ferences in temperature gradients results in different magnitudes
of natural convection, which affects the heat transfer performance
in the liquid phase. Calibration with experiment is necessary to
find a suitable mushy zone parameter value.

As a reminder, Shmueli [16] who also studied melting in a ver-
tical cylindrical tube reported that no match can be found between
the experimental and the numerical results for any value of the
mushy zone parameter. The main difference is that with no bottom
surface heating in Shmueli’s [16] experiment, no heat transfer was
promoted by the solid sinking phenomenon. Because of this, melt-
ing in the experiment happened much slower than the melting
model in Fluent can predicted. When solid sinking promotes melt-
ing in the experiment, a match between the experiment and the
numerical model was found with the optimal value of the mushy
zone constant reported in [5,7].

Fig. 10 shows the numerical and experimental melting patterns.
In terms of the solid fraction, the numerical and the experimental
results show the same trend with time. No bulk solid sinking phe-
nomenon is shown in the numerical fraction contours. However,
the temperature contours seem to exhibit some sinking phe-
nomenon. It is clear that the melting model in Fluent does not have
the mechanism to capture the bulk solid downward movement.
Nevertheless, in the mushy zone, due to the density difference, nat-
ural convection drives the heavier mushy components (partial
solid) downward. Thus, relatively lower temperature at the bottom
of the tube (blue1 ‘tailing’ temperature contour) is observed through
the melting process. This behavior to some degree mimics the con-
tact melting phenomenon, as the incompletely melted solids fall
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down to the bottom, although there is no differentiation between
the solid and the liquid in the numerical approach. This may also
explain the numerical sinking phenomenon reported in the litera-
ture [5,7,8] when using Fluent.

Furthermore, as the mushy zone parameter C controls the
intensity of convection, especially in the mushy zone, C can affect
the ‘sinking’ of the mushy components through natural convection,
when the bottom surface is heated. This can be the reason that for
each driving temperature difference, an optimal C is needed so that
the numerical melting rate will be comparable to the experiment.
However, when the bottom surface is insulated (no solid sinking to
promote melting), the tuning of C is of no use due to the much
slower melting process in the experiment [16]. When the bottom
is heated, a good match can be achieved with a proper C value
[5,7]. There are two probable reasons for the C values reported in
this paper to be different from those in the literature [5,7]: one is
the different viscosity, the other may be the differences in the bot-
tom shape (flat versus curved). With a spherical bottom, heat
transfer enhancement by solid sinking is more effective than the
cylindrical shape in the current paper, resulting in a smaller mushy
zone parameter (C ¼ 105) for the numerical model to match the
experiment.
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4. A Modified analytic solution for unconstrained melting in a
tube

The analytic solution proposed here for melting in a tube is
based on contact melting analysis [20–24]. When PCMmelts, a thin
fluid layer with thickness d is formed between the solid PCM and
the bottom heating surface (Fig. 11). The heavier solid PCM tends
to squeeze out the liquid and so d remains thin. It is assumed that
the process is quasi-steady, which means at every moment the
weight of the solid is balanced by the pressure in the liquid film.
Other assumptions include: (1) the temperature of the solid
remains at the initial temperature; (2) heat transfer is dominated
by conduction in the liquid film; (3) the liquid film has uniform
thickness; (4) the flow in the liquid film is primarily parallel to
the solid surface and driven by pressure gradients; (5) the inertia
terms in the governing equations are neglected.

Based on these assumptions, Chen et al. [21] developed an ana-
lytic solution for close contact melting in a vertical tube with
isothermal heating both at the side wall and the bottom. However,
these assumptions are only valid when the solid phase is much
denser than the liquid. It was found that the analytical model by
Chen et al. [21] always tends to under predict the melting time.
One most probable cause is the air voids in the solid PCM (observ-
able during the experiments) that may significantly lower the
melting rate. The analytic model does not include the thickness
of the glass tube and the heat transfer coefficient between the
water and the tube, which slightly underestimates the thermal
resistance. The other possible cause is that the PCM
(CaCl2 � 6H2OÞ used in the experiment is of 98% purity. A sharp
melting front may not be highly valid. Some transitional mushy
zone could exist in the bottom liquid layer. Aiming at these situa-
tions that cannot be completely in accordance with the analytic
model, a tuning parameter that can effectively adjust the thickness
of the melt layer is introduced into the analytic solution. In this
section, an analytic solution with a tuning parameter to adjust
the thickness of the liquid layer is developed and its validation
with experimental results is presented.

Fig. 11 shows the schematic of unconstrained melting in a cylin-
der. Assuming that the initial temperature is Ti everywhere, the
PCM melting temperature is Tm and the cylinder is heated at the
sides and the bottom with constant temperature Tw. The top
boundary has zero heat flux.
Fig. 11. Schematic of unconstrained melting.
First, a force balance acting on the solid PCM is considered. The
momentum equation for the molten liquid layer at the bottom of
the cylinder is:

dP
dr

¼ l @2uðrÞ
@z2

ð3:1Þ

With boundary conditions: uðrÞjz¼0 ¼ 0 & uðrÞjz¼d ¼ 0, its velocity is:

uðrÞ ¼ 1
2l

dP
dr

ðz2 � dzÞ ð3:2Þ

Mass balance equation at the bottom liquid layer can be written as:

ql2pr
Z d

0
uðrÞdz ¼ �qs

dh
dt
pr2 ð3:3Þ

Integrating Eq. (3.3) with respect to z, the pressure gradient is found
to be:

dP
dr

¼ 6l
d3

qs

ql

dh
dt

r ð3:4Þ

The pressure gradient in the bottom melt layer plays an important
role. Its force balance with the solid PCM will determine the thick-
ness of the melt layer. When considering that there is a transitional
region (mushy zone) during melting, the velocity given by Eq. (3.2)
may no longer be valid. The existence of the mushy region will
increase the flow resistance. Thus a tuning parameter can be intro-
duced here to adjust the viscosity of the melt layer to mimic the
extra flow resistance. The modified pressure gradient in the melt
layer becomes:

dP
dr

¼ 6Ml
d3

qs

ql

dh
dt

r ð3:5Þ

whereM is the tuning parameter. Letting U ¼ 6Ml
d3

qs
ql

dh
dt , and integrat-

ing Eq. (3.5) from 0 to r with respect to r:

PðrÞ ¼ U
2
r2 þ Pð0Þ ð3:6Þ

The balance forces acting on the solid PCM can be described as:Z r

0
2prPðrÞdr ¼ gðqs � qlÞpr2h ð3:7Þ

Assuming Pð0Þ ¼ 0, Eq. (3.7) becomes:Z r

0
rUr2dr ¼ gðqs � qlÞr2h: ð3:8Þ

Solving Eq. (3.8) gives:

h ¼ Ur2

4gðqs � qlÞ
ð3:9Þ

Second, in terms of energy balance, a linear temperature distri-
bution within the liquid layer is assumed:

T ¼ Tm � Tw

d
zþ Tw; ð3:10Þ

which gives:

dT
dz

����
z¼d

¼ Tm � Tw

d
; ð3:11Þ

To account for the sensible energy, an ‘effective’ latent heat capac-
ity, Le, is defined as:

Le ¼ Lf þ CpsðTm � TiÞ þ 0:5CplðTw � TmÞ ð3:12Þ
The first term is the latent energy of the PCM, the second term is the
sensible energy for the PCM temperature to increase from its initial
value to the melting point and the third term accounts for the sen-
sible energy in the liquid PCM, where the factor 0.5 is used to
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Fig. 12. Effect of the tuning parameter on the bottom liquid thickness.
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approximate the temperature gradient within the liquid PCM. The
local energy balance at the bottom solid PCM interface yields:

�kl
dT
dz

����
z¼d

¼ �qs
dh
dt

Le ð3:13Þ

With Eq. (3.11), the melt layer thickness can be obtained as:

d ¼ klðTw � TmÞ
�qs

dh
dt Le

ð3:14Þ

Substituting Eq. (3.14) and the expression for U into Eq. (3.9), a dif-
ferential equation for the time dependent solid PCM height h is
obtained:

h ¼ 6Mlqs

ql

ðqsLf Þ3
4gðqs � qlÞk3l ðTw � TmÞ3

r2
dh
dt

� �4

ð3:15Þ

Let H ¼ 6Mlqs
ql

ðqsLf Þ3
4gðqs�qlÞk3l ðTw�TmÞ3, and Eq. (3.15) is simplified as:

h ¼ r2H
dh
dt

� �4

ð3:16Þ

Solving this differential equation by integration:

Z h

Hi

�ðhÞ�1=4dh ¼
Z t

0
ðr2HÞ�1=4

dt ð3:17Þ

The final expression for the shrinking solid PCM height is:

h ¼ 3
4

4
3
ðHiÞ3=4 �

Z t

0
ðr2HÞ�1=4

dt
� �4=3

ð3:18Þ

For melting through the side wall of the vertical tube, it is
assumed that no convection in the melt is considered. Hence, heat
transfer is based on pure conduction. The energy balance equation
can be written as followings:

qsLf ðRi � rÞ dr
dt

¼ � klðTm � TwÞ
lnððRi � rÞ=RiÞ ð3:19Þ

Solving the equation by integration, an implicit form for the r
(shrinking radius of the solid PCM) is obtained:

ðRi � rÞ2 2ln
Ri � r
Ri

� �
� 1

� �
¼ 4klðTw � TmÞt

qsLf
ð3:20Þ

The analytic solution is obtained by solving Eqs. (3.20) and (3.18) in
discrete time space. At each time step, r is calculated using Eq.
(3.20) and is updated in Eq. (3.18) to calculate h. Finally, the liquid
fraction is calculated as following:

X ¼ pR2
i Hi � pr2h
pR2

i Hi

ð3:21Þ

Fig. 12 shows the effects of the tuning parameter M on the bot-
tom liquid thickness ðdÞ. Fig. 12(a) shows that for the same case M
can effectively control the thickness of d. d increases rapidly when
all of the solid PCM is almost melted. Overall, a larger M tends to
result in a thicker d. Fig. 12(b) shows that for the same value M
and the same dT , when the solid PCM has a higher height (#2), d
is smaller, which is consistent with physical intuition. The square
dot points in Fig. 13 are the melting times estimated by the ana-
lytic solutions for the cases investigated in the experiments. It
can be seen that for a given driving temperature, the experimental
results for the two different geometries (#1 & #2) match the ana-
lytic solutions very well, with the same tuning parameter. The
optimal tuning parameter has a strict linear relationship with the
driving temperature differences (M ¼ 150 for dT ¼ 10 �C;
M ¼ 100 for dT ¼ 15 �C; M ¼ 50 for dT ¼ 20 �C). Within this tem-
perature range, a linear correlation for the tuning parameter based
on driving temperature differences is given as:

MðdTÞ ¼ 50� 10ðdT � 20Þ; 10 �C 6 dT 6 20 �C ð3:22Þ
Finally, Fig. 14 presents a comparison of the melting curves

between the experimental, the analytic and the numerical results.
The experimental time- dependent liquid fraction curves for the
two driving temperature differences were obtained based on the
mean values of the three sets of data of each case as shown in
Figs. 6 and 7. The numerical curves have a good agreement with
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the experimental ones. Especially for the larger dT case, there is a
perfect match. Although the analytic curves match with the exper-
imental ones in terms of the final melting time, there is deviation
during the middle of the melting process. The analytic solution
gives faster melting at the beginning, while the experimental melt-
ing curve shows more linearity. Thus improvement of the analytic
solution is still required for future studies.

5. Conclusions

The mushy zone parameter within the source term used to
modify the moment equation for the enthalpy-porosity method
is given more insight and discussion. In particular, the seeming
contradiction that although, the enthalpy-porosity method in Flu-
ent cannot model bulk solid sinking behavior, numerical solid sink
behaviors are still reported in the literature. One possible explana-
tion is that convection in the liquid phase can exert a downward
shearing force on the solid. The other explanation is that within
the mushy region, incompletely melted solids sink to the bottom
by natural convection, which mimics the contact melting and
enhances heat transfer. Moreover, in this paper, experiments
demonstrating the melting of CaCl2 � 6H2O in a vertical tube sub-
merged in a water bath are conducted and used to calibrate
numerical models. It is proposed for the first time in this paper that
it is necessary to optimize the mushy zone parameter based on rel-
evant driving temperature differences in order to achieve good
agreement between numerical melting times and experimental
ones. Finally, an analytic solution for unconstrained melting in a
vertical tube with a tuning parameter to modify the viscosity of
the mushy region was developed. A linear correlation for the tun-
ing parameter based on driving temperature differences is given
and experimentally validated.
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