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Abstract: Reforming higher hydrocarbons, such as the military logistic fuel JP-8, into synthesis gas 

has been heavily researched to enable the use of fuel cells in military operations while conforming 

to the single fuel policy. Reforming JP-8 is specifically challenging due to its notoriously high sulfur 

content, which poses serious poisoning challenges for catalyst-based systems. A non-catalytic fuel 

reforming system can be advantageous when reforming fuels with non-ideal compositions. The 

proposed system studied in this work uses a “Swiss-roll” combustion reactor to recuperate heat 

losses using a spiral heat exchanger, which enables self-sustained thermal partial oxidation at super-

adiabatic temperatures near 1200°C (gas temperature). While the effective heat recirculation 

achieves high reforming efficiency without using catalysts, one challenge is the auto-ignition of the 

preheated reactants before they enter into the desired reaction zone. In this work, an advanced Swiss-

roll fuel reformer was designed, fabricated, and experimentally tested to address this challenge. In 

particular, a new approach to Swiss-roll reactant injection, by directly injecting the fuel to the center 

reaction zone, was integrated with a mixing chamber design to ensure the reactants are completely 

mixed before the partial oxidation reaction without auto-igniting. The experimental results and 

potential applications are discussed in detail.  
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1. Introduction 

Fuel cells are a promising technology for efficient electrical power generation from hydrogen, or 

hydrocarbon fuels, with no moving parts, harmful emissions, or noise. Promising commercial 

applications have already been realized in Fuel Cell Electric Vehicles (FCEV) and stationary 

power generation plants. However, enabling fuel cells for widespread use, especially military 

applications, presents challenges due to the availability of the fuel source. Most commercial fuel 

cell systems use a reliable source of high purity hydrogen, or methane, as the input chemical 

energy, but for military applications these fuel infrastructures are not available. In fact, the U.S. 

Army has instituted a Single Fuel Policy built around JP-8 fuel, meaning all systems requiring a 

fuel source must operate on JP-8 to simplify fuel logistics. Therefore, new technologies for military 

applications must be proven to adhere to this policy.  

 

Since fuel cells operate using hydrogen (or syngas) a fuel reformer must be used in order to enable 

operation with JP-8 fuel. Reforming JP-8 fuel using a precious metal catalyst has been studied in 

the past, but there are still challenges to overcome due to catalyst deactivation from coking or 
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sulfur poisoning. Thermal partial oxidation is an ideal reforming technique for JP-8 fuel due to its 

high tolerance to undesired species, but its low exothermicity at fuel-rich reforming conditions 

makes it difficult to the achieve the high-temperature reaction conditions required. 

 

A Swiss-roll reactor, first discovered in 1974 by Dr. Felix Weinberg, uses heat recuperation to 

raise the temperature of a given reaction to super-adiabatic conditions [1-2]. The device surrounds 

a reaction chamber with a spiral heat exchanger to effectively reduce the propensity for thermal 

losses. In this way, a Swiss-roll fuel reformer enables the desirable TPOX reforming mechanism 

for JP-8 fuel. Past research has shown the Swiss-roll’s capability in producing a robust, super-

adiabatic reaction zone with no external energy input at steady state [3-7]. The reactor is inherently 

sulfur tolerant, self-sustaining, compact, and has no moving parts. 

 

2. Methods / Experimental 

A Swiss-roll JP-8 fuel reformer was designed, fabricated, and tested in this work to address the 

aforementioned challenges with Swiss-roll TPOX fuel reforming. In particular, the design included 

direct fuel injection to the Swiss-roll reaction zone with an integrated mixing chamber to eliminate 

fuel auto-ignition in the spiral heat exchanger while maintaining a premixed gas-phase reaction to 

reduce soot formation. Based on this design, a stainless-steel Swiss-roll reactor was fabricated via 

additive manufacturing using a technique called Direct Metal Laser Sintering (DMLS). A model 

of the design and the Swiss-roll part integrated with the experimental test setup are shown in Figure 

1.  

 

 
Figure 1: (A) A 3-D model of the Swiss-roll fuel reformer prototype design. The vertical section 

view shows the mixing chamber integrated at the bottom of the center combustion zone. (B) The 

Swiss-roll fuel reformer prototype integrated with the experimental test setup.  

The Swiss-roll prototype was tested at a variety of fuel-rich reaction conditions, using JP-8 fuel, 

to characterize the TPOX reforming performance of the device. Compressed air was supplied to a 

mass flow controller to precisely control the amount of air entering the reactor. Similarly, a second 

mass flow controller metered propane into the reactor to preheat the device at startup, before 

injecting JP-8. A peristaltic JP-8 pump forced a prescribed amount of liquid fuel through a fuel 

heater to vaporize the fuel before injection into the Swiss-roll center. Strategically placed 

thermocouples measured the temperature throughout the reactor system to create a thermal profile 

for the device, while a single pressure transducer upstream of the Swiss-roll reactor measured the 

pressure drop across the system. A LabVIEW control system allowed the user to prescribe the 

input flow conditions, total flow rate and fuel percentage, and displayed and recorded the real-time 
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temperature and pressure measurements. The reformate species composition was measured for a 

range of input reaction conditions, using a SRI Gas Chromatograph (GC), to characterize fuel 

reforming performance.  

 

3. Results and Discussion 

The results from JP-8 fuel reforming tests show successful conversion of the target fuel to syngas 

using high-temperature, gas-phase TPOX reforming with no significant soot formation. The 

thermal and flow profiles in Figure 2, show the temperature of the reaction at the prescribed input 

fuel and air settings for each experimental condition. The Swiss-roll reactor was able to produce a 

stable, high-temperature reaction zone (often between 900-1000˚C), at a variety of flow conditions. 

 

 
Figure 2: The thermal and flow profiles from JP-8 testing with the Swiss-roll fuel reformer 

prototype.  

For each set of flow parameters, a reformate sample was extracted and analyzed by the GC. The 

species yield for each of the two main constituents of syngas (hydrogen and carbon monoxide) is 

shown in Figures 3 and 4 respectively. For a rough comparison, theoretical thermodynamic 

equilibrium concentrations were calculated using an isooctane/oxygen/nitrogen reaction using 

GASEQ software.  

 

In general, lower equivalence ratio tests for a given flow rate produced the closest yields to 

estimated thermodynamic. This was due in part to the higher reaction temperatures achieved and 

the lower maximum theoretical equilibrium values. However, at a total flow rate of 20 SLPM, 
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equivalence ratios 3.5 and 4 produced higher yields and were closer to theoretical equilibrium than 

values measured at lower equivalence ratios for the same flow rate. The reaction condition which 

was closest to thermodynamic equilibrium for both hydrogen and carbon monoxide concentrations 

was 30 SLPM total flow rate and ϕ=2.4. At this set point, the hydrogen yield was nearly 75% of 

equilibrium while the carbon monoxide yield reached about 98% of equilibrium. Non-

coincidently, this condition also produced the highest temperature during testing at nearly 1100˚C. 

As predicted, the reformate yield, and therefore the reactor performance, is highly dependent on 

reaction conditions and the temperature in the reaction zone.  

 

Despite not reaching estimated thermodynamic equilibrium, the chemical enthalpy in the fuel 

reforming system was mostly conserved when considering all major flammable species measured. 

Figure 5 shows the reaction chemical efficiency defined as the chemical enthalpy in the reformate 

over the chemical enthalpy in the initial JP-8 feedstock. For 12 of the 13 total reformate samples 

analyzed, the chemical efficiency was over 60%. The highest chemical efficiencies (>80%) were 

measured at a total flow rate of 30 SLPM with ϕ ranging from 2.4 to 3.  

 

 
Figure 3: The hydrogen yield in the Swiss-roll reformate as a function of reaction equivalence 

ratio at different total flow rates. 
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Figure 4: The carbon monoxide yield in the Swiss-roll reformate as a function of reaction 

equivalence ratio at different total flow rates. 

 

 
Figure 5: A large amount of the input chemical enthalpy from the JP-8 fuel is conserved in the 

Swiss-roll reformate after TPOX fuel reforming.  
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4. Conclusions 

The Swiss-roll reactor tested in this work was able to successfully reform JP-8 fuel using TPOX 

with heat recuperation. Hydrogen and carbon monoxide yields at about 75% and 98% of 

thermodynamic equilibrium were demonstrated respectively, while retaining over 80% of the input 

chemical enthalpy. In addition, no significant soot accumulation was visibly observed during 

testing. Future work is needed to further characterize the device over a wider range of reaction 

conditions, with an emphasis on building and sustaining a higher temperature reaction zone to push 

the reformate toward thermodynamic equilibrium.  
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