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ABSTRACT 
Recent advances in machine learning (ML) techniques have 

led to a shift in strategy for predicting the hydrothermal 
performance of thermal management solutions. This study 
presents the ML-based prediction of hydrothermal performances 
of water-cooled dimpled ducts using an artificial neural network 
(ANN). The significance of the present study is to develop the 
ANN model using a limited number of performance data without 
any existing relations/correlations between input variables and 
outputs. Thermal and hydrodynamic performances of the ducts 
are represented by heat transfer coefficient and pressure drop, 
respectively. The input dataset for training the ANN model was 
prepared through a computational fluid dynamics (CFD) 
approach. The accuracy of the ANN model was demonstrated as 
such it predicted heat transfer coefficients and pressure drops of 
new dimpled ducts within ±17% and ±19% of true values, 
respectively. The present study provides a practical insight to 
predict the hydrothermal performance of a thermal management 
solution subject to limited available datapoints, and without 
detailed knowledge about the complex thermo-fluid physics 
behind the operation of the cooling system. 
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1. INTRODUCTION 
 The accelerated miniaturization of electronic components, 
coupled with their increased functionality, has necessitated the 
development of more effective thermal management solutions to 
address the challenge of preventing overheating in modern 
electronic devices [1–5]. Dimpled surfaces have been widely 
identified as efficient techniques to passively improve heat 
transfer [6–9]. However, since dimpled surfaces are usually 
implemented to enhance the thermal performance of an active 
cooling system, the overall pumping power of the thermal 
management solution may substantially increase due to large 

pressure drops resulting from the addition of the dimples. 
Developing an effective active thermal management solution 
involves finding a balance between its thermal performance, 
primarily characterized by thermal resistance, and its 
hydrodynamic performance, represented by the pumping power 
[10–13]. A penalty in the pumping power may hinder using the 
cooling system, regardless of its capability to enhance thermal 
performances [14–16]. Therefore, accurately predicting both the 
pressure drop and thermal performance of a dimpled cooling 
system is essential for designing an efficient cooling system that 
can enhance heat transfer while operating within a practically 
acceptable range of pumping power. Empirical correlations 
developed from experimental/simulation data have been widely 
used to predict hydrothermal performances of cooling systems. 
However, conducting experiments and/or simulations to collect 
large numbers of data points over extensive ranges of design 
parameters and operating conditions requires substantial efforts 
and extremely high computational resources, even when 
utilizing current advanced computational facilities [17]. Relying 
on an existing bank of performance data for a cooling system 
from literature rather than collecting data through experiments 
or simulations also poses its own set of challenges. The available 
data may be limited in terms of the number of data points, and 
more significantly, these data points may be widely scattered, 
given that they are collected by different researchers across 
diverse ranges of operating and design conditions. The absence 
of clear relationships among these scattered data points makes 
the development of correlations through conventional regression 
and interpolation techniques extremely challenging, if not 
impossible [18,19]. 

Machine learning (ML) has been identified as a powerful 
technique to overcome the challenge of conducting expensive 
experiments and simulations for collecting data points. ML, a 
subset of artificial intelligence, identifies latent patterns from 
complex datasets and obtains the relationships between inputs 
and outputs with reasonable accuracy even in highly nonlinear 
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systems [20]. This capability of ML is highly suitable to generate 
new outputs when there is a limited and scattered dataset 
available in literature for a particular application. Developing 
empirical correlations needs sufficient knowledge to identify key 
design parameters as well as their impacts on the thermo-fluid 
physics behind the operation of the cooling system. In the 
absence of such knowledge, which is very possible when the 
physics is complex, accuracy and efficacy of the empirical 
correlations remain questionable. However, ML-based models 
could predict the hydrothermal performance of a cooling system 
without any need for detailed knowledge of the complex thermo-
fluid physics. A ML algorithm learns a complex pattern between 
inputs and outputs from the input dataset and uses this pattern to 
generate outputs for new inputs [21,22]. Another significance of 
ML is its application in optimization problems, especially when 
the physics behind the transport phenomena is not well 
understood. For an optimization process, a correlation is required 
to determine relationships between inputs and outputs. However, 
in applications with complex thermo-fluid physics, developing a 
physics-based model to describe such relationships is extremely 
challenging. However, since ML is a data-driven technique, it 
does not need a correlation between inputs and outputs. 

In the present study, an artificial neural network (ANN) is 
used to predict heat transfer coefficient (h) and pressure drop 
(∆𝑃𝑃) of dimpled ducts operating in a laminar flow. The 
significance of the present study is that the ANN model is 
developed using a limited number of performance data without 
any existing correlations among the inputs and outputs. The 
ANN model identifies a pattern among four design parameters 
that are the input variables, and h and ∆𝑃𝑃 as two outputs. The 
accuracy of the model is assessed by comparing the predicted 
data with new performance data that have not been observed by 
the ANN model before. The present study provides a practical 
insight on the development of ML-based models for predicting 
hydrothermal performance of thermal management systems 
subjected to limited available performance datapoints. 
 
2. COMPUTATIONAL APPROACH 
2.1 Artificial Neural Network (ANN) 

An artificial neural network (ANN) consists of 
interconnected nodes called neurons. The feed-forward 
multilayer ANN model, illustrated in Fig. 1, comprises of an 
input layer, hidden layer(s), and an output layer [23]. Input 
variables are received in the input layer, and outputs are 
generated in the output layer. Hidden layer(s) are intermediate 
layers used to transfer information from the input layer to the 
output layer. The feed-forward implies that the inputs always 
propagate forward through the network, which means that the 
outputs of all neurons in one layer act as the inputs for the 
neurons in the next layer [24]. Since ML is a data-driven 
technique, preparation of an input dataset that must consist of 
inputs and outputs is an essential step for the learning process of 
the ANN. The input dataset is randomly divided into three 
categories: training, validation, and testing. The input-output 
pattern is learned from the training dataset and the performance 
of the pattern is assessed by the validation dataset. When the 

training and validation is terminated, the accuracy of the neural 
network is evaluated using the testing dataset, which is a new 
dataset that has not been previously observed by the neural 
network [25]. 

 

 
FIGURE 1: SCHEMATIC OF A MULTILAYER ANN 
ARCHITECTURE 

 
Inside the neural network, each neuron is associated with 

weights and a bias. The output signals transferred from neurons 
of the (n-1)-th layer to the j-th neuron of the n-th layer is 
represented as follows [17,21,26]: 
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where n
jkw  corresponds to the weight from the k-th neuron of the 

(n-1)-th layer to the j-th neuron of the n-th layer, and 
nf  is the 

activation function of layer n. The loss function (E), which is the 
magnitude of the error between the predicted outputs and the true 
values, is calculated using an evaluation metric, which is the 
mean absolute error (MAE) in the present study: 
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where ˆiy  and 

iy  are the i-th predicted output and the true 
values, respectively. Then, the weights are updated using 
gradient descent algorithms through an iterative process, as 
shown below: 
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where η  is the learning rate. An optimizer is used to improve the 
training speed and accuracy for updating the weights. When the 
training process is terminated, the accuracy of the neural network 
is assessed by an evaluation metric, which is MAE in this study. 
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2.2 Problem Description 

The cooling system of interest in the present study is a two-
dimensional dimpled duct illustrated in Fig. 2. Since the ANN 
modeling strategy in the present study is not restricted to the 
number of dimensions, a two-dimensional duct is selected only 
to reduce the computational time for preparing the input dataset. 

 

 
FIGURE 2: SCHEMATIC OF THE DIMPLED DUCTS IN THE 
PRESENT STUDY 

 
The duct material and coolant are aluminum and water, 

respectively. Dimples are hemispheres that are uniformly 
distributed on both sides of the duct in the streamwise direction. 
H, L, d, P, and 𝛿𝛿 correspond to the duct height, length, dimple 
width, pitch (center-to-center distance), and dimple height, 
respectively. Due to the hemispherical geometry of the dimples, 
𝑑𝑑 = 2𝛿𝛿. The relation between P and the duct length is as follows: 
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where N represents the number of dimples on one side of the 
duct. The ducts operate within laminar flow regime with a 
Reynold number (Re) up to 1200. The Re is defined using the 
half-height of the channel [27,28], as follows: 
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where U, 𝜌𝜌, and 𝜇𝜇 are the fluid velocity, density, and viscosity, 
respectively. 

The goal of the present study is to develop an ANN-based 
model to predict thermal and hydraulic performance of dimpled 
ducts within the operating conditions and geometrical 
information provided in Table 1. For simplicity, it is assumed 
that all ducts have the same length, although the ANN model can 
be developed to include duct length as an additional variable. 
The thermal and hydraulic performance of the ducts are 
characterized by h and ∆𝑃𝑃, respectively. The major significance 
of the present study is to develop an ANN-based model using 
limited available hydrothermal performance data points (137 
data) within the wide geometrical and operating conditions 
covered in Table 1. The available data points are listed in Table 
2. Nd in Table 2 represents the number of datapoints. 

 
TABLE 1: GEOMETRICAL AND OPERATIONAL CONDITIONS 
OF THE DIMPLED DUCTS. 

L (mm) 100 
H (mm) 1 - 10 
d (mm) ≥ 0.1 
𝑁𝑁 × 𝑑𝑑 𝐿𝐿⁄  ≤ 0.95 
Re ≤ 1200 

 
TABLE 2: INPUT DATASET FOR TRAINING THE ANN. 

H (mm) Nd d (mm) N Re 
1 12 0.5 7 50, 200 

0.6 4 25, 75, 125 
0.7 9 250, 350, 450, 650 
0.8 12 200, 350, 500 

2 15 0.75 19 150, 440, 640, 873 
1 15 130, 270, 363, 700 
1.2 11 263, 383, 603 
1.7 6 68, 213, 345, 370 

3 13 0.8 30 170, 400, 785, 1053 
1.4 10 123, 235, 450 
1.8 21 245, 445, 780, 998 
2.3 3 100, 205 

4 13 0.9 18 205, 750, 875, 1145 
1.5 28 110, 348, 558, 1130 
2 6 30, 55, 85 
3.4 9 25, 63 

5 16 1 21 248, 503, 865, 1113 
2 16 163, 428, 580, 833 
2.5 8 145, 278, 483, 698 
3 4 50, 208, 465, 700 

6 14 1.3 16 210, 390, 710, 1050 
2.7 11 245, 495, 673, 953 
3.6 6 118, 160, 280, 358 
5 3 45, 108 

7 15 1 33 190, 568, 750, 1120 
1.7 10 218, 498, 650, 1138 
4 15 155, 410, 595, 840 
6 2 25, 50, 95 

8 14 2 24 195, 345, 885, 1130 
3.4 17 133, 425, 725, 1050 
4.5 9 38, 125, 165, 248 
7.5 3 40, 50 

9 13 1 26 383, 723, 1000, 1130 
4.2 7 90, 175, 238 
6.5 14 160, 293, 403 
7.6 9 70, 145, 193 

10 12 3.5 20 270, 450, 900, 1135 
5.5 10 190, 495, 625 
6.5 13 190, 280, 505 
8.5 3 50, 75 

Total number of data points 137 
 

2.3 Input Data Preparation 
The input dataset listed in Table 2 was prepared by 

simulation of steady state and two-dimensional laminar flow and 
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heat transfer in dimpled ducts using a computational fluid 
dynamics (CFD) approach. The governing equations by 
assuming an incompressible flow and constant properties for 
both fluid and solid are as follows [29]: 

 
. 0u∇ =  (6) 

( ) 2.u u p uρ µ∇ = −∇ + ∇  (7) 

2.  f fu T Tα∇ = ∇  (8) 
2 0sT∇ =  (9) 
 

where 𝑢𝑢� , 𝜌𝜌, 𝑝𝑝, 𝜇𝜇, 𝑇𝑇𝑓𝑓, and 𝛼𝛼 are fluid velocity, density, pressure, 
viscosity, temperature, and thermal diffusivity, respectively. 
Also, 𝑇𝑇𝑠𝑠 is the solid temperature. The governing equations were 
solved using Ansys Fluent. At the inlet, fluid flow velocity and 
temperature of 20 °C were set. At the outlet, zero axial gradients 
for all the variables were imposed. The remaining surfaces were 
walls with a no-slip boundary condition. A constant heat flux 
equivalent to 200 W was applied at the bottom surface of the 
duct. The upper surface was adiabatic. To calculate the 
temperature distribution at the interface between the solid and 
the fluid, the conjugate problem of conduction equation with 
convection in the fluid were solved simultaneously [30]. The 
grid independence tests confirmed negligible changes in h and 
∆𝑃𝑃 by increasing the number of grids beyond the selected 
number of computational cells for the ducts. 
 
2.4 ANN Training 

Through the training process, the ANN learns a pattern 
among the input variables and outputs. In this study, the input 
variables for training the neural network were H, d, N, and Re. 
The outputs were h and ∆𝑃𝑃. The accuracy of an ANN model 
highly depends on selecting an appropriate network architecture 
and settings, which are usually determined through a trial-and-
error technique. Detailed research about the dependency of the 
accuracy of the results to neural network architectures can be 
found in [19]. In this study, two multilayer feed-forward ANNs 
with the same architectures and settings, one of which is used for 
predicting h and another for predicting ∆𝑃𝑃, were used. The only 
difference between the two neural networks is their output. 
Among 137 data points provided in Table 2, 64% and 16% were 
chosen randomly for training and validation, respectively. The 
remaining 20% was used for testing to evaluate the accuracy of 
the networks. The neural networks were implemented in Python. 
Table 3 lists detailed information on the ANN models used in 
this study. 

 
TABLE 3: DETAILS OF THE ANN MODEL. 

ANN type Feed-forward multi-layer 
Inputs H, d, N, Re 
Outputs h and ∆𝑃𝑃. Each output 

belongs to an individual 
neural network 

Number of hidden layers 8 

Number of neurons in 
hidden layers 

256 neurons at each hidden 
layer 

Loss function MAE 
Data division (training, 
validation, testing) 

64:16:20 

Batch size 24 
Number of epochs 1000 
Learning rate 3 × 10−4 
Activation function ReLU 
Training algorithm Backpropagation 
Optimizer Adam 

 
3. RESULTS AND DISCUSSION 

The loss function in the present study was the MAE. Fig. 3 
illustrates the MAE at different numbers of epochs (i.e., training 
processes) related to the training and validation of the neural 
network to predict h. Negligible changes in the MAE beyond 100 
epochs indicates the convergence of the training process at 100 
epochs. 

 

 
 

FIGURE 3: CORRESPONDING LOSS FUNCTION FOR THE 
TRAINING AND VALIDATION OF THE ANN TO PREDICT HEAT 
TRANSFER COEFFICIENT 

 
To verify the prediction accuracy of the ANN model, the 

heat transfer and fluid flow for randomly selected dimpled ducts 
with different geometrical parameters than those provided in 
Table 2 but within conditions indicated in Table 1 were 
simulated, and their corresponding hydrothermal performances 
were compared with the predicted values obtained by the 
developed ANN model. Table 4 lists the information of the 
selected dimpled ducts. 

Fig. 4 and Fig. 5 compare the percentage deviation from the 
true values for the heat transfer coefficients and pressure drops, 
respectively. The percentage deviation is obtained as 
�𝜓𝜓𝑝𝑝 − 𝜓𝜓𝑡𝑡� 𝜓𝜓𝑡𝑡 × 100⁄ , where 𝜓𝜓 indicates either h or ∆𝑃𝑃, and the 
indexes 𝑝𝑝 and 𝑡𝑡 correspond to the predicted value by the ANN 
model and the true value obtained by CFD, respectively. 
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TABLE 4: DIMPLED DUCTS FOR EVALUATING THE 
PREDICTION ACCURACY OF THE ANN MODEL. 

H (mm) L (mm) d (mm) N Re 
2.5 100 1.2 20 300, 490, 550, 800, 

1025 
3.3 100 1.4 24 200, 250, 340, 525, 

650, 750, 900, 1000 
4.8 100 2 15 250, 375, 600, 850, 

1050 
5.7 100 2.8 30 300, 400, 490, 550, 

650, 800, 1025 
6.3 100 2.2 24 200, 340, 525, 750, 

1000 
8.5 100 3.2 30 490, 550, 800, 1025 
Total number of data points 34 

 
 

 
FIGURE 4: COMPARISON BETWEEN THE PREDICTED AND 
SIMULATED HEAT TRANSFER COEFFICIENTS FOR DIMPLED 
DUCTS SPECIFIED IN TABLE 4 

 
The ANN model in the present study predicted heat transfer 

coefficients and pressure drops of dimpled ducts within ±17% 
and ±19% of true values, respectively. While these deviations 
may seem larger than those obtained by detailed empirical 
correlations, the development of such precise correlations 
necessitates extensive knowledge of the underlying complex 
physics governing the hydrothermal performance of the 
problem. Although training the ML algorithm with a large 
number of data points can result in higher prediction accuracy, 
the cost and time associated with computational resources and/or 
experimental efforts substantially increase. However, given that 
the neural networks in this study were trained with a limited set 
of data points, the good agreements between the predicted and 

true values suggest a satisfactory level of accuracy for the ANN 
model to predict the hydrothermal performance of the dimpled 
ducts in the present study.  

The proposed modeling strategy in the present study is a 
general approach and is independent from the type of thermal 
management solution and the thermo-fluid physics behind the 
operation of the cooling system. However, attention should be 
given to preparing an appropriate input dataset that covers a 
sufficiently wide range of performance data. Otherwise, the ML 
model may underpredict or overpredict the hydrothermal 
performance of the cooling system. 

 

 
FIGURE 5: COMPARISON BETWEEN THE PREDICTED AND 
SIMULATED PRESSURE DROPS FOR DIMPLED DUCTS 
SPECIFIED IN TABLE 4 
 
4. CONCLUSION 

The capability of ANN-based models to predict the 
hydrothermal performances of dimpled ducts over an extensive 
range of design parameters and operating conditions subject to 
limited available performance data points was investigated. The 
performance of the ANN model was demonstrated by comparing 
the predicted and simulated performance data corresponding to 
six randomly selected dimpled ducts at random Re, which were 
not observed by the neural network before. The ANN-based 
model predicted heat transfer coefficients and pressure drops of 
new dimpled ducts within ±17% and ±19% of true values, 
respectively. Such good agreement, particularly when 
employing a limited input dataset for training the neural network, 
suggests that ML-based models serve as effective alternatives to 
expensive experimental and simulation efforts for predicting 
hydrothermal performances of thermal management solutions. 
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