ACT Logo
|ADVANCED COOLING TECHNOLOGIES
0
Cart Icon
Contact Us
  • Thermal Solutions
    • Passive Thermal Solutions
      • Heat Pipes
        • HiK Plates­™/ Heat Pipe Assemblies
        • Pulsating Heat Pipes
        • Vapor Chambers
        • High Temperature Heat Pipes
      • Loop Thermosyphon
      • Phase Change Based Solutions
        • PCM Heat Sinks
      • Liquid Cold Plates
    • Enclosure Cooling Products
      • HSC (Heat Sink Coolers)
      • HPC (Heat Pipe Coolers)
      • TEC (Thermoelectric Coolers)
      • VCC (Vapor Compression Coolers)
      • Enclosure Cooling Selection Tool
    • Space Thermal Control
      • Constant Conductance Heat Pipes
      • Variable Conductance Heat Pipes
      • Space Copper-Water Heat Pipes
      • Loop Heat Pipes
      • Space VPX
      • Liquid Cooling
    • Active Thermal Management Solutions
      • Liquid Cooling
      • Pumped Two-Phase
      • Liquid-Air HX
      • Tekgard® ECUs
      • Vaphtek™ ECU
      • Tekgard® Chillers
    • Embedded Computing Solutions
      • ICE-Lok®
      • VME/ VPX Card Frames
      • Conduction Cooled Chassis
      • Liquid Cooled Chassis
    • HVAC Energy Recovery
      • AAHX
      • WAHX
  • Engineering Services
    • Research & Development
      • Our Research & Development Team
      • Emerging Technology
      • Technical Papers
      • Other Research Interests
    • Product Development
    • Space Thermal & Structural Analysis
    • Manufacturing
    • Lifecycle Management
  • Industries
    • Energy
      • Wind Energy
      • Nuclear Energy
      • Power Conversion
      • Energy Storage
      • HVAC Energy Recovery
    • Space
    • HVAC Energy Recovery
    • Defense
    • Medical
    • Data Centers
    • Other
  • Resources
    • Blog
    • Calculators & Selection Tools
      • AAHX Selection Tool
      • Enclosure Cooling Selection Tool
      • Heat Pipe Calculator
      • PCM Calculator
      • WAHX Selection Tool
    • Publications
      • Published Articles
      • Patents
      • Technical Papers
    • Learning Center
      • Heat Pipe Learning Center
      • Pumped Two-Phase Learning Center
      • PCM Learning Center
      • HVAC Learning Center
      • Videos
      • eBooks
      • Brochures
      • Case Studies
      • Webinars
    • Find your Rep
  • Shop
    • Sealed Enclosure Coolers
    • Heat Pipe Coolers
      • Heat Pipe Cooler Accessories
    • Heat Sink Coolers
      • Heat Sink Cooler Accessories
    • Thermoelectric Coolers
    • Vapor Compression Coolers
  • About
    • Careers
    • Events
    • News
    • Sustainability
    • ACT Leadership
  • Contact
  • Thermal Solutions
    • Passive Thermal Solutions
      • Heat Pipes
        • HiK Plates­™/ Heat Pipe Assemblies
        • Pulsating Heat Pipes
        • Vapor Chambers
        • High Temperature Heat Pipes
      • Loop Thermosyphon
      • Phase Change Based Solutions
        • PCM Heat Sinks
      • Liquid Cold Plates
    • Enclosure Cooling Products
      • HSC (Heat Sink Coolers)
      • HPC (Heat Pipe Coolers)
      • TEC (Thermoelectric Coolers)
      • VCC (Vapor Compression Coolers)
      • Enclosure Cooling Selection Tool
    • Space Thermal Control
      • Constant Conductance Heat Pipes
      • Variable Conductance Heat Pipes
      • Space Copper-Water Heat Pipes
      • Loop Heat Pipes
      • Space VPX
      • Liquid Cooling
    • Active Thermal Management Solutions
      • Liquid Cooling
      • Pumped Two-Phase
      • Liquid-Air HX
      • Tekgard® ECUs
      • Vaphtek™ ECU
      • Tekgard® Chillers
    • Embedded Computing Solutions
      • ICE-Lok®
      • VME/ VPX Card Frames
      • Conduction Cooled Chassis
      • Liquid Cooled Chassis
    • HVAC Energy Recovery
      • AAHX
      • WAHX
  • Engineering Services
    • Research & Development
      • Our Research & Development Team
      • Emerging Technology
      • Technical Papers
      • Other Research Interests
    • Product Development
    • Space Thermal & Structural Analysis
    • Manufacturing
    • Lifecycle Management
  • Industries
    • Energy
      • Wind Energy
      • Nuclear Energy
      • Power Conversion
      • Energy Storage
      • HVAC Energy Recovery
    • Space
    • HVAC Energy Recovery
    • Defense
    • Medical
    • Data Centers
    • Other
  • Resources
    • Blog
    • Calculators & Selection Tools
      • AAHX Selection Tool
      • Enclosure Cooling Selection Tool
      • Heat Pipe Calculator
      • PCM Calculator
      • WAHX Selection Tool
    • Publications
      • Published Articles
      • Patents
      • Technical Papers
    • Learning Center
      • Heat Pipe Learning Center
      • Pumped Two-Phase Learning Center
      • PCM Learning Center
      • HVAC Learning Center
      • Videos
      • eBooks
      • Brochures
      • Case Studies
      • Webinars
    • Find your Rep
  • Shop
    • Sealed Enclosure Coolers
    • Heat Pipe Coolers
      • Heat Pipe Cooler Accessories
    • Heat Sink Coolers
      • Heat Sink Cooler Accessories
    • Thermoelectric Coolers
    • Vapor Compression Coolers
  • About
    • Careers
    • Events
    • News
    • Sustainability
    • ACT Leadership
  • Contact
0
Cart Icon View Cart
Increasing the Boiling Limit with a Hybrid Wick Heat Pipe

Grooved Constant Conductance Heat Pipes (CCHPs) transport heat from a heat source to a heat sink with a very small temperature difference. Aluminum/ammonia CCHPs are used for transferring the thermal loads on-orbit due to their high wick permeability and associated low liquid pressure drop, resulting in the ability to transfer large amounts of power over long distances in a micro-g environment. The maximum heat flux into a CCHP is set by the boiling limit, which is roughly 5 to 15 W/cm2 for typical grooves.

In order to increase the heat flux limit to more than 50 W/cm2, ACT developed heat pipes with a hybrid wick that contains screen mesh, metal foam, or sintered evaporator wicks for the evaporator region, which can sustain high heat fluxes, where the axial grooves in the adiabatic and condenser sections can transfer large amounts of power over long distances due to their high wick permeability and associated low liquid pressure drop as shown in the figure to the right.

  1. For 0.5” OD aluminum/ammonia hybrid heat pipe, boiling and capillary limits are shown in the chart to the right as a function of the evaporator’s sintered wick thickness in the CCHPs performance.
  2. The boiling limit can be improved by minimizing the wick thickness in the evaporator, but the capillary limit will be reduced. As the boiling limit is more sensitive and important than the capillary limit in hybrid CCHPs, the 0.06 in. (1.5 mm) wick should be selected
Top Up facing arrow in a square
Page Index
ACT Logo
Advanced Cooling Technologies, Inc.
1046 New Holland Avenue
Lancaster, Pennsylvania 17601, USA
(717) 295-6061 Contact Our Experts
linkedin youtube twitter facebook
  • shop products online
  • sitemap
  • privacy policy
  • terms & conditions
  • ISO9001 & AS9100 CERTIFIED, ITAR REGISTERED

Copyright 2025. All rights reserved.