ACT Logo
|ADVANCED COOLING TECHNOLOGIES
0
Cart Icon
Contact Us
  • Thermal Solutions
    • Passive Thermal Solutions
      • Heat Pipes
        • HiK Plates­™/ Heat Pipe Assemblies
        • Pulsating Heat Pipes
        • Vapor Chambers
        • High Temperature Heat Pipes
      • Loop Thermosyphon
      • Phase Change Based Solutions
        • PCM Heat Sinks
      • Liquid Cold Plates
    • Enclosure Cooling Products
      • HSC (Heat Sink Coolers)
      • HPC (Heat Pipe Coolers)
      • TEC (Thermoelectric Coolers)
      • VCC (Vapor Compression Coolers)
      • Enclosure Cooling Selection Tool
    • Space Thermal Control
      • Constant Conductance Heat Pipes
      • Variable Conductance Heat Pipes
      • Space Copper-Water Heat Pipes
      • Loop Heat Pipes
      • Space VPX
      • Liquid Cooling
    • Active Thermal Management Solutions
      • Liquid Cooling
      • Pumped Two-Phase
      • Liquid-Air HX
      • Tekgard® ECUs
      • Vaphtek™ ECU
      • Tekgard® Chillers
    • Embedded Computing Solutions
      • ICE-Lok®
      • VME/ VPX Card Frames
      • Conduction Cooled Chassis
      • Liquid Cooled Chassis
    • HVAC Energy Recovery
      • AAHX
      • WAHX
  • Engineering Services
    • Research & Development
      • Our Research & Development Team
      • Emerging Technology
      • Technical Papers
      • Other Research Interests
    • Product Development
    • Space Thermal & Structural Analysis
    • Manufacturing
    • Lifecycle Management
  • Industries
    • Energy
      • Wind Energy
      • Nuclear Energy
      • Power Conversion
      • Energy Storage
      • HVAC Energy Recovery
    • Space
    • HVAC Energy Recovery
    • Defense
    • Medical
    • Data Centers
    • Other
  • Resources
    • Blog
    • Calculators & Selection Tools
      • AAHX Selection Tool
      • Enclosure Cooling Selection Tool
      • Heat Pipe Calculator
      • PCM Calculator
      • WAHX Selection Tool
    • Publications
      • Published Articles
      • Patents
      • Technical Papers
    • Learning Center
      • Heat Pipe Learning Center
      • Pumped Two-Phase Learning Center
      • PCM Learning Center
      • HVAC Learning Center
      • Videos
      • eBooks
      • Brochures
      • Case Studies
      • Webinars
    • Find your Rep
  • Shop
    • Sealed Enclosure Coolers
    • Heat Pipe Coolers
      • Heat Pipe Cooler Accessories
    • Heat Sink Coolers
      • Heat Sink Cooler Accessories
    • Thermoelectric Coolers
    • Vapor Compression Coolers
  • About
    • Careers
    • Events
    • News
    • Sustainability
    • ACT Leadership
  • Contact
  • Thermal Solutions
    • Passive Thermal Solutions
      • Heat Pipes
        • HiK Plates­™/ Heat Pipe Assemblies
        • Pulsating Heat Pipes
        • Vapor Chambers
        • High Temperature Heat Pipes
      • Loop Thermosyphon
      • Phase Change Based Solutions
        • PCM Heat Sinks
      • Liquid Cold Plates
    • Enclosure Cooling Products
      • HSC (Heat Sink Coolers)
      • HPC (Heat Pipe Coolers)
      • TEC (Thermoelectric Coolers)
      • VCC (Vapor Compression Coolers)
      • Enclosure Cooling Selection Tool
    • Space Thermal Control
      • Constant Conductance Heat Pipes
      • Variable Conductance Heat Pipes
      • Space Copper-Water Heat Pipes
      • Loop Heat Pipes
      • Space VPX
      • Liquid Cooling
    • Active Thermal Management Solutions
      • Liquid Cooling
      • Pumped Two-Phase
      • Liquid-Air HX
      • Tekgard® ECUs
      • Vaphtek™ ECU
      • Tekgard® Chillers
    • Embedded Computing Solutions
      • ICE-Lok®
      • VME/ VPX Card Frames
      • Conduction Cooled Chassis
      • Liquid Cooled Chassis
    • HVAC Energy Recovery
      • AAHX
      • WAHX
  • Engineering Services
    • Research & Development
      • Our Research & Development Team
      • Emerging Technology
      • Technical Papers
      • Other Research Interests
    • Product Development
    • Space Thermal & Structural Analysis
    • Manufacturing
    • Lifecycle Management
  • Industries
    • Energy
      • Wind Energy
      • Nuclear Energy
      • Power Conversion
      • Energy Storage
      • HVAC Energy Recovery
    • Space
    • HVAC Energy Recovery
    • Defense
    • Medical
    • Data Centers
    • Other
  • Resources
    • Blog
    • Calculators & Selection Tools
      • AAHX Selection Tool
      • Enclosure Cooling Selection Tool
      • Heat Pipe Calculator
      • PCM Calculator
      • WAHX Selection Tool
    • Publications
      • Published Articles
      • Patents
      • Technical Papers
    • Learning Center
      • Heat Pipe Learning Center
      • Pumped Two-Phase Learning Center
      • PCM Learning Center
      • HVAC Learning Center
      • Videos
      • eBooks
      • Brochures
      • Case Studies
      • Webinars
    • Find your Rep
  • Shop
    • Sealed Enclosure Coolers
    • Heat Pipe Coolers
      • Heat Pipe Cooler Accessories
    • Heat Sink Coolers
      • Heat Sink Cooler Accessories
    • Thermoelectric Coolers
    • Vapor Compression Coolers
  • About
    • Careers
    • Events
    • News
    • Sustainability
    • ACT Leadership
  • Contact
0
Cart Icon View Cart
Test System for Simulation of ISS JEMS Module Fluid Loop

ACT designed, fabricated and tested a Fluid Control Unit (FCU) for NASA to simulate a thermal fluid loop using FC-72 for heat rejection onboard the International Space Station (ISS). The FCU is designed to provide FC-72 volume flow, pressure and heat rejection for ground testing of instruments destined for the JEMS module on the ISS. To date, ACT has delivered two FCU’s to NASA in support of the CATS and CREAM instruments.  The user interface enables control of fluid flow, differential pressure and temperature while logging these values. The design includes 40 micron filters, automated valves, vacuum pump and an accumulator. The vacuum pump and accumulator allow the user to evacuate and charge the instrument. The Fluid Control Units are fabricated using high quality materials and meet and exceed the cleanliness requirements of ISO 14952-2:2003.

Custom Fluid Control Unit Capabilities

  • Pump fluid (Fluorinert™ FC-72) at varying flow rates up to 3 GPM at 225 psi (11 liter/min at 1.5 MPa).
  • Maintain fluid inlet temperature at a user-specified value within 1°C by rejecting heat to an air-cooled vapor compression system or providing heat using an electric heater
  • Maintain system pressure at a user-controlled setting
  • Record and display several system parameters, such as pressures, temperatures, and flow rates. This could be done using the onboard data logger or by connecting a laptop
  • Pull a rough vacuum and charge the instrumentation system
  • Purge the system with Nitrogen and collect purged fluid in the accumulator
  • Provide a port and functionality necessary for fluid sampling
  • Be the brightest object in the laboratory (FCU color scheme selected by customer)

ACT communicated regularly with our customer throughout the design and fabrication of the FCU to ensure the unit met their needs. Prior to shipping, testing of the FCU demonstrated that the unit met all of the customer’s specifications. Test results were included with the FCU manual which was delivered with the unit. Two FCU’s have been operating at our customer’s facility since 2013.

Figure 1. Two Views of the Accumulator Test Rig.
Figure 2. ACT’s OCO-3 Fluid Control Unit in service during thermal vacuum testing of the Orbiting Carbon Observatory-3 payload at the Jet Propulsion Laboratory

Fluid Control Unit for NASA JPL

ACT designed, fabricated, and tested a second Fluid Control Unit for the NASA Jet Propulsion Laboratory that was used for ground testing of the Orbiting Carbon Observatory 3 (OCO-3).  OCO-3 was built using the spare OCO-2 instrument and is installed at the International Space Station (ISS). Learn more about the mission here: https://ocov3.jpl.nasa.gov/.

The OCO-3 FCU was constructed to provide precisely metered flow at a stable temperature while measuring and recording flow rate, fluid pressures, and fluid temperatures. The system has an integrated membrane contactor which allows for dissolved gases to be removed from the fluid without draining. This is useful since oxygen readily dissolves in the fluorinated working fluid. Also included in the system is a bellows type accumulator which allows for pressurization of the working fluid without direct contact between any gases and the working fluid.  Figure 2 shows ACT’s FCU unit during thermal ground testing at JPL.

If you are interested in learning more, contact ACT today.

Top Up facing arrow in a square
Page Index
  1. Custom Fluid Control Unit Capabilities
  2. Fluid Control Unit for NASA JPL
ACT Logo
Advanced Cooling Technologies, Inc.
1046 New Holland Avenue
Lancaster, Pennsylvania 17601, USA
(717) 295-6061 Contact Our Experts
linkedin youtube twitter facebook
  • shop products online
  • sitemap
  • privacy policy
  • terms & conditions
  • ISO9001 & AS9100 CERTIFIED, ITAR REGISTERED

Copyright 2025. All rights reserved.