ACT Logo
|ADVANCED COOLING TECHNOLOGIES
0
Cart Icon
Contact Us
  • Thermal Solutions
    • Passive Thermal Solutions
      • Heat Pipes
        • HiK Plates­™/ Heat Pipe Assemblies
        • Pulsating Heat Pipes
        • Vapor Chambers
        • High Temperature Heat Pipes
      • Loop Thermosyphon
      • Phase Change Based Solutions
        • PCM Heat Sinks
      • Liquid Cold Plates
    • Active Thermal Solutions
      • Liquid Cooling
      • Pumped Two-Phase
      • Liquid-Air HX
      • Tekgard® ECUs
      • Vaphtek™ ECU
      • Tekgard® Chillers
    • Data Center Solutions
      • Coolant Distribution Units (CDU)
      • Liquid Cold Plates
      • Manifolds
    • Embedded Computing Solutions
      • ICE-Lok®
      • VME/ VPX Card Frames
      • Conduction Cooled Chassis
      • Liquid Cooled Chassis
    • Enclosure Cooling Products
      • HSC (Heat Sink Coolers)
      • HPC (Heat Pipe Coolers)
      • TEC (Thermoelectric Coolers)
      • VCC (Vapor Compression Coolers)
      • Enclosure Cooling Selection Tool
    • HVAC Energy Recovery
      • AAHX
      • WAHX
    • Space Thermal Control
      • Constant Conductance Heat Pipes
      • Variable Conductance Heat Pipes
      • Space Copper-Water Heat Pipes
      • Loop Heat Pipes
      • Space VPX
      • Liquid Cooling
  • Engineering Services
    • Research & Development
      • Our Research & Development Team
      • Emerging Technology
      • Technical Papers
      • Other Research Interests
    • Product Development
    • Space Thermal & Structural Analysis
    • Manufacturing
    • Lifecycle Management
  • Industries
    • Energy
      • Wind Energy
      • Nuclear Energy
      • Power Conversion
      • Energy Storage
      • HVAC Energy Recovery
    • Space
    • HVAC Energy Recovery
    • Defense
    • Medical
    • Data Centers
    • Other
  • Resources
    • Blog
    • Calculators & Selection Tools
      • AAHX Selection Tool
      • Enclosure Cooling Selection Tool
      • Heat Pipe Calculator
      • PCM Calculator
      • WAHX Selection Tool
    • Publications
      • Published Articles
      • Patents
      • Technical Papers
    • Learning Center
      • Heat Pipe Learning Center
      • Pumped Two-Phase Learning Center
      • PCM Learning Center
      • HVAC Learning Center
      • Videos
      • eBooks
      • Brochures
      • Case Studies
      • Webinars
    • Find your Rep
  • Shop
    • Sealed Enclosure Coolers
    • Heat Pipe Coolers
      • Heat Pipe Cooler Accessories
    • Heat Sink Coolers
      • Heat Sink Cooler Accessories
    • Thermoelectric Coolers
    • Vapor Compression Coolers
  • About
    • Careers
    • Events
    • News
    • Sustainability
    • ACT Leadership
  • Contact
  • Thermal Solutions
    • Passive Thermal Solutions
      • Heat Pipes
        • HiK Plates­™/ Heat Pipe Assemblies
        • Pulsating Heat Pipes
        • Vapor Chambers
        • High Temperature Heat Pipes
      • Loop Thermosyphon
      • Phase Change Based Solutions
        • PCM Heat Sinks
      • Liquid Cold Plates
    • Active Thermal Solutions
      • Liquid Cooling
      • Pumped Two-Phase
      • Liquid-Air HX
      • Tekgard® ECUs
      • Vaphtek™ ECU
      • Tekgard® Chillers
    • Data Center Solutions
      • Coolant Distribution Units (CDU)
      • Liquid Cold Plates
      • Manifolds
    • Embedded Computing Solutions
      • ICE-Lok®
      • VME/ VPX Card Frames
      • Conduction Cooled Chassis
      • Liquid Cooled Chassis
    • Enclosure Cooling Products
      • HSC (Heat Sink Coolers)
      • HPC (Heat Pipe Coolers)
      • TEC (Thermoelectric Coolers)
      • VCC (Vapor Compression Coolers)
      • Enclosure Cooling Selection Tool
    • HVAC Energy Recovery
      • AAHX
      • WAHX
    • Space Thermal Control
      • Constant Conductance Heat Pipes
      • Variable Conductance Heat Pipes
      • Space Copper-Water Heat Pipes
      • Loop Heat Pipes
      • Space VPX
      • Liquid Cooling
  • Engineering Services
    • Research & Development
      • Our Research & Development Team
      • Emerging Technology
      • Technical Papers
      • Other Research Interests
    • Product Development
    • Space Thermal & Structural Analysis
    • Manufacturing
    • Lifecycle Management
  • Industries
    • Energy
      • Wind Energy
      • Nuclear Energy
      • Power Conversion
      • Energy Storage
      • HVAC Energy Recovery
    • Space
    • HVAC Energy Recovery
    • Defense
    • Medical
    • Data Centers
    • Other
  • Resources
    • Blog
    • Calculators & Selection Tools
      • AAHX Selection Tool
      • Enclosure Cooling Selection Tool
      • Heat Pipe Calculator
      • PCM Calculator
      • WAHX Selection Tool
    • Publications
      • Published Articles
      • Patents
      • Technical Papers
    • Learning Center
      • Heat Pipe Learning Center
      • Pumped Two-Phase Learning Center
      • PCM Learning Center
      • HVAC Learning Center
      • Videos
      • eBooks
      • Brochures
      • Case Studies
      • Webinars
    • Find your Rep
  • Shop
    • Sealed Enclosure Coolers
    • Heat Pipe Coolers
      • Heat Pipe Cooler Accessories
    • Heat Sink Coolers
      • Heat Sink Cooler Accessories
    • Thermoelectric Coolers
    • Vapor Compression Coolers
  • About
    • Careers
    • Events
    • News
    • Sustainability
    • ACT Leadership
  • Contact
0
Cart Icon View Cart
LED Extrusion Isothermalization

Heat pipes have an effective thermal conductivity of 10,000 to 100,000 W/m K, compared with aluminum’s thermal conductivity of about 180 W/m K.  Therefore, the performance of large aluminum heat sinks can be improved with embedded heat pipes.  The high effective conductivity allows the heat pipes to spread the heat throughout the heat sink.  This heat spreading reduces the thermal gradient and likewise reduces the max temperature at the LED source.  Benefits include:

  • Improved lifetime and reliability by operating with the same power at a lower temperature
  • Increased optical output by operating at the same temperature with higher powers
  • Reduced heat sink size and weight

Our testing and analysis has confirmed that the longer the extrusion, the more heat pipes improve performance.  As seen in Figure 1, the percentage improvement in thermal resistance with heat pipes increases approximately linearly with increasing heat sink length. For example one can expect to see a 5% improvement in thermal resistance for a 5 cm long heat sink, increasing to 30% for a 30 cm long heat sink.  Please note that one can expect the benefit will be more noticeable in natural convection heat sinks, as fan operation plays a major role in forced convection performance.

Figure 1. The efficiency of an aluminum extrusion heat sink can be improved by embedding heat pipes. The benefit is increased with longer heat sinks.
Figure 1. The efficiency of an aluminum extrusion heat sink can be greatly improved by embedding heat pipes. The benefit is increased with longer heat sinks.

Figure 2. IR image and photograph of a heat pipe embedded heat sink dissipating 100 W.
Figure 2. IR image and photograph of a heat pipe embedded heat sink dissipating 100 W.

Figure 2 shows a photograph and an infrared (IR) image of a heat sink with embedded heat pipes.  In this case heat pipes were embedded in a 200mm long radial heat sink that that was dissipating 100 watts of heat.  The heat pipe improves the efficiency of the heat sink, by transferring heat with a very low ΔT from the LED at the bottom to the entire length of the heat sink.

Figure 3 shows calculated temperatures for identical heat sinks, with and without embedded heat pipes.  The heat pipes decreased the LED maximum temperature by 10⁰C, which will help achieve long, reliable operation.

Figure 3. Comparison of identical heat sinks with (B) and without (A) embedded heat pipes, dissipating 100 W. The heat pipes reduce the LED temperature by 10°C, helping to increase life and reliability.
Figure 3. Comparison of identical heat sinks with (B) and without (A) embedded heat pipes, dissipating 100 W. The heat pipes reduce the LED temperature by 10°C, helping to increase life and reliability.
Top Up facing arrow in a square
Page Index
ACT Logo
Advanced Cooling Technologies, Inc.
1046 New Holland Avenue
Lancaster, Pennsylvania 17601, USA
(717) 295-6061 Contact Our Experts
linkedin youtube twitter facebook
  • shop products online
  • sitemap
  • privacy policy
  • terms & conditions
  • ISO9001 & AS9100 CERTIFIED, ITAR REGISTERED

Copyright 2025. All rights reserved.