Satellite Electronics Box Cooling

The Anchor Node Mission for the International Lunar Network (ILN) has a Warm Electronics Box (WEB) and a battery, both of which must be maintained in a fairly narrow temperature range using a variable thermal conductance link. During the day, the thermal link must transfer heat from the WEB electronics to the radiator as efficiently as possible, to minimize the radiator size. On the other hand, the thermal link must be as ineffective as possible during the Lunar night to keep the electronics and battery warm with minimal power, even with the very low temperature (100 K) heat sink.

A trade study was conducted that examined five different variable thermal links: 1. Pumped Loop, 2. Thermal Switch, 3. Variable Conductance Heat Pipe (VCHP), 4. Loop Heat Pipe (LHP), and 5. LHP with bypass valve. The table compares the potential thermal links.

Figure 1. Anchor Node with WEB Located in Middle.

Table 1. Comparison of Potential Thermal Links.

Technology Attributes Mechanical Heat Switch VCHP Mini Loop Heat Pipe Mechanically Pumped Coolant Loop
Heat Transfer Capacity Range, W 1 to 20 1 to over 100 10 to over 100 25 to over 500
Active/Passive System Passive Passive Passive Active
Configuration Flexibility Inflexible, needs to be located close to the heat sink Flexible Very flexible, can easily transfer heat over large distances, over a meter Very Flexible, can transfer heat over very long distances
Heat Collection Flexibility (at source) Constrained to small foot print Constrained to small foot print Constrained to small foot print No constraint on foot print
Heat Rejection Flexibility (at sink) Constrained to small foot print Constrained to small foot print No constraint on foot print No constraint on foot print
Typical mass, kg 0.10 to 0.12 0.3 to 0.5 0.3 to 0.5 4 to 20
Conductance, W/K On 0.4 to 0.5 20 10 to 15 5 to 10
Conductance, W/K Off 0.02 to 0.025 0.01 to 0.04 0.01 to 0.03 0.03 to 0.05
Electric Power, W None 1-2 for tight thermal control 1 for “off condition” 5 for start up (a few min.) 3 to 10 for “on condition” (including electronics)
Heritage Excellent (test on Mars) Excellent for grooved wicks Excellent for Space Excellent for Space

Figure 2. ILN Loop Heat Pipe Thermal Switch Concept with Bypass Valve.

Mechanically pumped loops were dropped from further consideration, since they are not passive, and require power, which is limited on the Anchor Node. Thermal Switches were dropped due to their low thermal conductance. The variable thermal link could be:

  1. LHP
  2. LHP with bypass valve
  3. VCHP with internal reservoir

The table compares LHP and VCHP variable thermal links. Either the LHP or the VCHP could be used as the variable thermal link. Both have similar “on” and “off” thermal conductances, both have flown in space, and both have similar masses.

Table 3. Comparison of Loop Heat Pipe and Variable Conductance Heat Pipe Variable Links

LHP VCHP
Working Fluid Propylene Ammonia
Mass 0.3 kg 0.45 kg
Shutdown Power 0 to 2 W 0 W
Start-Up Heater 5 W 0 W
Conductance – On ~ 15 W/K ~20 W/K
Conductance – Off 0.01 W/K 0.04 W/K (all Al)0.008 (5 in. SS)
TRL Level – Conventional 9 9
Radiator Coverage by Condenser Full Partial, unless Raised
May require Radiator CCHPs No Yes

A mini-LHP has the highest TRL level. However, supplying 1 W of power through the 14-day Lunar night requires roughly 5 kg of mass. A mini-LHP with a bypass valve requires more development and validation, but eliminates the electrical shut-down power. A VCHP with a hybrid wick requires the most development. The benefit is that it would be much less expensive to fabricate than a loop heat pipe. ACT is currently working with NASA Marshall to develop the mini-LHP with bypass valve, and the VCHP.

Have a Question?

  • This field is for validation purposes and should be left unchanged.