ACT Launches New Web-Based Selection Tool For Air-to-Air Heat Pipe Heat Exchangers

Air to Air Heat Exchanger Selection Tool

Lancaster, Pennsylvania – June 17, 2014.  Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA., has released an easy-to-use, registration free, web-based selection tool for its energy recovery line of Passive Heat Pipe Air-to-Air Heat Exchangers (HP-AAHX).

Heat Pipe Air-to-Air Heat Exchangers:
The ACT HP-AAHX system recovers energy from a building’s entering or leaving air ventilation system.  Depending upon geographical location, cold winter incoming air is tempered by the warm building air being exhausted.  In summer time, the hot entering air is cooled by the cool building air being exhausted. The ACT HP-AAHX system can be installed with entering and leaving air ducts situated side-by-side or separated. The ACT HP-AAHX system is passive and transfers energy with no moving parts. The ASHRAE 90.1 Energy Standard for Buildings Except Low-Rise Residential Buildings calls out specific geographical regions where air-to-air energy recovery systems should be installed. Application factors like climate, air flow rates and the percentage of outside air drive the selection.  The ASHRAE 90.1 Standard application recommendations have been mandated by many local and municipal building codes.

Selecting a Heat Pipe Air-to-Air Heat Exchanger System:
This ACT AAHX Selection tool, located at, is intended to provide the HVAC designer with the capability to perform a system design selection and to evaluate energy recover performance at various design points. It is also intended as a system design collaboration tool to clearly communicate project requirements, goals, and preliminary selections with ACT applications engineers.

Initial Selection of Design Conditions and Choice of Variables:

  • SOLUTION PARAMETERS: There are two modes (SELECT) or (RATE).  In SELECT mode, the calculator will provide the number of rows and fins per inch required to meet your input conditions.  In the RATE mode, the calculator will provide the output temperatures of the air streams based on the input conditions.
  • CALCULATION UNITS: Under PROJECT INFORMATION select either IP for ºF or SI for ºC.
  • LIMIT FIN RANGE: Under SOLUTION PARAMETERS there is a slide bar.  Simply slide along the bar to select the range of interest.

User Selectable Variables:

  • OUTSIDE AIR DB/WB: Enter (if known) or select the nearest city under the PROJECT INFORMATION tab.
  • RETURN AIR DB/WB: Enter the conditioned space return air DB/WB values.  (75°F/62.5°F is a good starting point if the exact conditions are unknown).
  • SUPPLY AIR DB / EFFECTIVENESS: In the SELECT mode, enter the desired supply air DB temperature or the desired effectiveness of the HP-AAHX. In the RATE mode, these values are calculated.
  • SUPPLY AIRFLOW : Enter the supply side airflow (SCFM).  Note: Supply and return airflows values do not need to match.
  • RETURN AIRFLOW: Enter the return side airflow (SCFM).
  • FIN HEIGHT AND LENGTH: On the supply side, enter both the fin height and the finned length.  On the return side, enter only the finned length.  The fin height will be equal to the supply side.  The finned lengths do not need to match.

Documenting and Evaluating Your Work…There are two useful output options.  One is a “Print to PDF”, which will capture all of the on screen data in a PDF format.  The other is a “Submit to ACT” which again captures all of the screen data, including your optional project information. The PDF arrives at ACT where it can be evaluated and potential recommendations can be made for system design optimization. The final selection can be the basis for a quotation.   Please visit and give this new selection tool a try! Call ACT to review your application or provide comments on the new HP-AAHX Selection Tool.



Have a Question or Project to Discuss?