Kuan-Lin Lee[1], Calin Tarau[2] , Andy Lutz[3] and William G. Anderson[4]
Advanced Cooling Technologies ,Inc, Lancaster, PA, 17601
and
Cho-Ning Huang[5], Chirag Kharangate[6] and Yasuhiro Kamotani[7]
Case Western Reserve University, Cleveland, OH, 44106
The next generation of Lunar rovers and landers requires variable thermal links to maintain payload temperatures nearly constant over wide sink temperature fluctuations. It has been demonstrated on earth that a hot reservoir variable conductance heat pipe (VCHP) can provide a much tighter passive thermal control capability compared to a conventional VCHP with a cold-biased reservoir. However, previous ISS test results revealed that the fluid management of a hot reservoir VCHP needs to be improved to ensure its long-term reliability. Under an STTR Phase I program, Advanced Cooling Technologies, Inc. in collaboration with Case Western Reserve University performed fundamental research to understand the complex transport phenomena within a hot reservoir VCHP. A novel loop VCHP configuration was developed during the program. This loop design allows a net flow to be induced and circulate along the NCG tubing system, which will continuously remove the excessive working fluid from the reservoir (i.e. purging) in a much faster rate compared to diffusion alone. Two potential mechanisms to induce net transport flow were identified:
1. By momentum transfer from vapor to NCG through shearing in the condenser/front region. It was called “DC” mechanism.
2. By filtering the pulses (via a tesla/check valve) generated in the heat pipe section of VCHP loop. It was called “AC” mechanism.
Although these two mechanisms are independent, the AC mechanism can be further added/superimposed on the top of the DC mechanism to achieve a higher flow rate. This paper presents the work performed in Phase I to prove the existence of momentum transfer flow (“DC flow) and its effectiveness on VCHP purging. The work includes theoretical analysis, numerical modeling, prototype development and experimental demonstration.
Nomenclature
AC = fluctuating component of the flow within a loop VCHP
DC = constant component of the flow within a loop VCHP
D = diffusion coefficient
LNCG = length of NCG tube
RNCG = internal radius of NCG tube
U = average induced flow velocity
µ = viscosity of NCG
ψ = vapor concentration in the reservoir
Δp = pressure difference between inlet and outlet of NCG tube
I. Introduction
NASA’s plans to further expand human and robotic presence in space automatically involve significant challenges. Spacecraft architectures will need to handle unprecedented thermal environments in deep space. In addition, there is a need to extend the duration of the missions in both cold and hot environments, including cis-lunar and planetary surface excursions. The heat rejection turn–down ratio of the increased thermal loads in the above-mentioned conditions is crucial for minimizing the usage of vehicle resources (e.g. power). Therefore, future exploration activities will need thermal management systems that can provide higher reliability and performance, and, at the same time, with reduced power and mass. To meet these requirements, passive thermal management concepts that offer large turn-down ratios are highly encouraged. As an example, the anchor node network (which is a lander that includes a seismometer, a laser reflector, and a probe for measuring heat flow from the Moon’s interior) has a Warm Electronics Box (WEB) and a battery, both of which must be maintained in a fairly narrow temperature range. A variable thermal link between the WEB and radiator is required. During the day, the thermal link must transfer heat from the WEB electronics to the radiator as efficiently as possible, with minimum thermal resistance, to minimize the radiator size. On the other hand, the thermal link must be as ineffective as possible (provide as high thermal resistance as possible) during the Lunar night. This will keep the electronics and battery warm with minimal power, even with the very low temperature (100 K) heat sink. At this time, heat must be shared between the electronics and battery, to keep the battery warm. Moreover, since the cold lunar night is very long (14 days) minimizing or even eliminating the survival power is highly desired. This can be done with a passive variable thermal link between the WEB and the Radiator. This variable thermal link can be a hot reservoir variable conductance heat pipe (VCHP).
Figure 1. (a) Analytical thermal control predictions for two VCHP hot and cold reservoir configuration with five different working fluids: Methanol, Toluene, Pentane, Ammonia and Propylene3 (b) VCHP with an integrated hot reservoir for ISS test
It was already demonstrated both analytically and experimentally[1],[2],[3] that hot reservoir VCHPs would offer tight passive thermal control as opposed to the traditional cold biased reservoir VCHPs that, for the same tightness of thermal control need reservoir heating. Figure 1 shows analytical thermal control predictions for two VCHP hot (Configuration 1) and cold (Configuration 2) reservoir designs with five different working fluids: Methanol, Toluene, Pentane, Ammonia and Propylene. As seen, the hot reservoir configuration shows a much narrower vapor temperature band compared to the cold reservoir configuration, as sink temperature sweeps vary between -90℃ and 40℃.
The hot reservoir VCHP was tested on ISS in 2017 as part of the Advanced Passive Thermal experiment (APTx) project[4]. While the ground testing was a success, the microgravity testing failed. The pipe showed higher than admissible temperatures that tripped the safety thermostats. The explanation of the failure is as follows: during startup, the absence of natural convection in the reservoir delayed the non-condensable gas (NCG) heating compared to the vapor heating which is much more effective because of the metallic (copper) path of the incoming heat. The consequence was that vapor pressure increased faster than NCG pressure (because of poor heating) and the resulted pressure wave pushed vapor into the reservoir (where colder NCG was present), where part of it condensed. As a result, the NCG was displaced out in the condenser increasing vapor temperature considerably. The next step was the attempt to remove vapor from the reservoir by applying heat to the reservoir, which is referred to as the “purging process”. It was found that the rate of purging was very low. The slow purging rate became a show stopper for the experiment.
Based on the ISS test results, it was concluded that fluid management within the reservoir and the NCG tube (typically non-wicked) of VCHPs is the key area to be improved. Advanced features/solutions that can (1) prevent working fluid condensing inside a reservoir and (2) remove working fluid from the reservoir efficiently are needed to support foreseeable long-term warm reservoir VCHP space operations. Under this STTR program, Advanced Cooling Technologies, Inc (ACT) in collaboration with Case Western Reserve University (CWRU) perform a detailed and fundamental study to understand complex transport phenomena of multi-species within a hot reservoir VCHP. A novel “Loop hot reservoir VCHP” configuration resulted from this study, which can potentially enhance VCHP’s reliability in both ground and microgravity operations.
[1] R&D Engineer III, Advanced Cooling Technologies, Inc., 1046 New Holland Ave., Lancaster, PA 17601
[2] Principal Engineer, Advanced Cooling Technologies, Inc., 1046 New Holland Ave., Lancaster, PA 17601
[3] R&D Engineer II, Advanced Cooling Technologies, Inc., 1046 New Holland Ave., Lancaster, PA 17601
[4] Chief Engineer, Advanced Cooling Technologies, Inc., 1046 New Holland Ave., Lancaster, PA 17601
[5] Graduate Student, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
[6] Assistant Professor, Case Western Reserve University,10900 Euclid Ave., Cleveland, OH 44106
[7] Professor, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
II. Loop Hot Reservoir VCHP Configuration
Figure 2. Regular VCHP with integrated warm reservoir (Green: NCG rich gas; Yellow: Vapor rich gas)
As depicted in Figure 2, a regular hot reservoir VCHP uses only one internal NCG tube connecting the reservoir with the condenser. A loop hot reservoir VCHP concept is illustrated in Figure 3. This novel configuration consists of a hot reservoir VCHP and two NCG tubes. One tube (internal) coming out from the NCG reservoir goes into the heat pipe section from the evaporator end. A second tube externally connects the end of the condenser with the reservoir. This loop configuration would allow a secondary (the vapor flow is considered as “primary”) fluid flow to be induced and move along the loop in the favorable direction (reservoir-internal tube-condenser) for purging (indicated with the black arrows). The mechanism to induce the secondary flow (i.e. transport flow) is as follows,
Figure 3. Loop Hot Reservoir VCHP (Green: NCG rich gas; Yellow: Vapor rich gas)
- A strong vapor flow (i.e. primary flow) is generated in the heat pipe section due to evaporation and condensation of the working fluid.
- The primary flow will carry momentum in axial direction. As the vapor passes by the end of the internal NCG tube, some of the momentum will be transferred to the NCG stream through the shear between two species as well as a low static pressure point is created at the end (entrance) of the NCG tube.
- Both the momentum transfer from vapor flow to NCG at the interaction region (shown in Figure 2) as well as the low-pressure point would induce a flow of NCG in a preferential direction.
Compared to the primary flow (vapor) velocity, the secondary flow (mostly NCG) is relatively weak but it would still be beneficial for VCHP purging in the following aspects,
- During startup, this flow will condition the VCHP by transporting NCG-vapor mixture from the reservoir to the condenser via the internal NCG tube. This reduces the vapor concentration (NCG humidity) in the reservoir by bringing dryer NCG from the condenser via the external tube.
- This secondary flow exists all the time as long as vapor flow exists within the heat pipe section. Therefore, the vapor concentration within the reservoir can be maintained at low (design) values all the time.
- Based on the above-described mechanism, heating of the reservoir (to encourage purging) may be eliminated.
- This convective-based purging will be significantly more effective than the diffusion-based purging. Diffusion is basically governed by concentration gradient between reservoir and condenser, so the rate of purging will decay as the concentration gradient decreases. But the convection-based purging rate is all thermally driven for as long as power/heat is transferred by the VCHP.
III. Concept Feasibility Study – Numerical and Theoretical Analysis
A. Diffusion-based Purging Model
Figure 4. Computational domain of purging model
To study the purging process of a hot reservoir VCHP, a CFD-based model was developed and by CWRU. The computational domain is shown in Figure 4. For simplicity, an axisymmetric model was considered where a thin NCG pipe is connected to a cylindrical reservoir at the center. This is a simplified version of the heat pipe internal tube, condenser and reservoir sections. The NCG pipe is cooled at the other end, which induces the condensation of the vapor. It is assumed that a uniform mixture of vapor and NCG exists before the cooling. After the start of cooling, the concentration of the vapor decreases gradually starting from the cooling section. Eventually, by diffusion process, the vapor concentration of the whole system is reduced to the value dictated by the cooling section temperature.
The vapor concentration (ψ) is determined by solving the diffusion equation.
Formula 1
The diffusion coefficient, D, changes with the temperature and pressure within the system.
Formula 2
where D = D0 at T0 = 273 K (0°C) and P0 = 1 atm (101 kPa). Except for the condenser, all other walls are assumed to be insulated. A mixture of water vapor and helium (NCG) is considered in the present analysis. Before the cooling starts, the mixture everywhere is assumed to be 50% water vapor and 50% helium at a temperature of 30°C. After time = 0, the cooling wall temperature is set at 10°C. For this mixture, D0 is estimated to be equal to 2 × 10-5 m2/s. The mixture temperature changes from 30°C to 10°C in the process. The variation of vapor concentration within the reservoir is shown in Figure 5.
Figure 5. Variation of vapor concentration within the reservoir with time for (a) various length of NCG tubes (ID 1.2 mm) and (b) various NCG tube diameters
Figure 5(a) shows how the values of ψmax change with time for several values of NCG pipe lengths. As the figure shows, diffusion (or purging) is a very slow process due to the fact that the mass transfer rate through the thin NCG pipe is limited. Although the total purging time depends on how we define the acceptable value of ψmax, the purging will take several days if the pipe length is longer than about 10 cm. The effect of the pipe diameter on the purging process is shown in Figure 5(b). As seen in the figure, a diameter of 2.8 mm reduces the purging time to around 15 hours. The analysis results demonstrated that the purging by diffusion may take tens of hours or even days, which matches ACT’s past testing experience.
B. Numerical Study of Hot Reservoir VCHP Loop
Another numerical model is developed by CWRU to study the interaction between vapor and NCG within a hot reservoir VCHP and verify the momentum inducing the flow mechanism described in the previous section. The computational domain is shown schematically in Figure 5. In this study the working fluid is acetone and the NCG is helium. The working temperatures are: 50, 60, 70, 80°C. It is assumed that the heat pipe operates in a gravity-assisted mode, so there is no wick structure. The pipe wall is made of aluminum. The relevant dimensions of the loop VCHP are summarized in Table 1. The amount of NCG is arbitrary determined such that the vapor-NCG interface is located halfway in the condenser section at 50°C. The interface moves more into the condenser section with an increase in operating temperature. The cooling is assumed to be done by forced convection cooling with a specified heat transfer coefficient. The heat transfer coefficient is specified such that the heat input is nearly equal to 30W at 50°C with the ambient temperature equal to 20°C. Since the phenomena in the evaporator are not the focus in the present study, it is assumed that the evaporator simply generates enough vapor to balance the amount of condensation in steady-state, so that the vapor flow is analyzed only in the adiabatic and condenser sections. The total pipe length (heat pipe and loop) is assumed to be 1 m. Since the NCG pipe is long and thin and the flow through the pipe is expected to be on the order of mm/s, the flow in the pipe can be assumed to be fully developed. Therefore, instead of analyzing the pipe flow in detail, the known pressure drop-velocity relation for fully-developed pipe flow is used. The relation can be written as
Formula 3
The computed pressure difference (∆P) within a heat pipe with an internal NCG tube is about 0.1 Pa. Even though the pressure difference is small, it is enough to generate appreciable flow. For example, 0.1 Pa of pressure difference can induce around 3.4 mm/s of flow (calculated based on Equation (3)).
Figure 6. Schematic of VCHP loop
Table 1. Dimensions of hot reservoir VCHP Loop for numerical study
Figure 7. (a) Average velocity through the NCG pipe vs. NCG pipe outlet location. (b) Average velocity through the NCG pipe vs. heat input
The dependence of the velocity on the NCG pipe outlet location is shown in Figure 7 (a). The velocity increases as LNCG becomes smaller. This happens because as the NCG pipe recedes (LNCG becomes smaller), the friction effect on the vapor flow in the heat pipe decreases so that the stagnation pressure (or the pressure in the NCG region) increases. For the condition of Figure 7 (a), the maximum velocity through the NCG pipe is about 4 mm/s. Figure 7 (b) shows how the velocity changes with Q while keeping Tsat constant. Q is changed from 8.9 to 41.5 W by changing the heat transfer coefficient for the cooling from 44 to 435 Wm-2∙K-1. The pipe flow velocity increases almost linearly with Q.
Figure 8. (a) Induced flow velocity vs. temperature with constant Q (b) Induced flow velocity and Q vs. temperature with constant heat transfer coefficient for cooling
The effect of working temperature on the average NCG flow velocity is also numerically investigated. The relation between working temperature and induced NCG flow velocity when Q is fixed at 31W is presented in Figure 8(a). This figure shows that the velocity decreases with temperature. This occurs because as the vapor temperature increases, vapor density increases as well, which results in a decelerating vapor flow (for fixed Q), and therefore, the shearing effect on NCG decreases. To be noted is the fact that, in this case, the front goes away from the NCG tube which, according to modeling results, would increase the pressure difference. However, vapor velocity decrease dominates. Next, the combination effects of Q and the interface location with constant cooling rate is studied, which is shown in Figure 8 (b). As shown above, the effect of Q on the velocity is opposite to that of the interface location: increasing Q increases average flow velocity but moving the vapor front further away from the NCG tube end decreases the flow velocity.
Axial velocity profile along the cross-section A-A (aligned with the NCG pipe outlet) is presented in Figure 9. Since the NCG flow coming out from the internal tube is very small compared to the primary vapor velocity (~0.25 cm/s), it is very difficult to observe in the figure that there is a non-zero velocity near the center core (r = 0). In summary, utilizing this loop based VCHP concept, it is possible to obtain a sufficiently large velocity through the external pipe so that the purging can be accomplished within several minutes, which represents a significant improvement compared to the diffusion-based purging process discussed above. It is also found through simulation that multiple design parameters will affect the induced flow velocity, including
-
Figure 9. Velocity distribution across A-A section (induced flow velocity in the center is around 3 mm/s)
Internal NCG tube end location and vapor front location.
- Heat input.
- Vapor temperature.
- Annular space between heat pipe and NCG tube.
- Gravity level and orientation of the pipe.
IV. Concept Feasibility Study – Experimental Validation
A. Experimental apparatus
Figure 10. Schematic of experimental apparatus for Loop VCHP concept feasibility demonstration
In parallel to the mathematical study, an experimental demonstration was conducted by ACT to prove the existence of the momentum transport flow within a VCHP Loop. The schematic experimental system is shown in Figure 10 and the actual test setup is shown in Figure 11. The test apparatus consists of a VCHP with a non-integrated reservoir and an external NCG tube connecting between the condenser and the reservoir. The structural material is stainless steel. Working fluid and NCG are acetone and helium. The heat pipe section is in a slight gravity-aid orientation (< 5°) and there is no wick structure inserted within the adiabatic and condenser sections for liquid return. According to the findings from numerical analysis (Figure 8(a)), the internal NCG tube length was adjusted so it ends in the adiabatic section before the condenser to obtain a higher induced flow velocity. Temperatures at various locations along the heat pipe and the loop are measured by 26 TCs. The key dimensions of the test setup are summarized in Table 2.
Figure 11. Experimental apparatus of the VCHP loop concept demonstration
Table 2. Dimensions of the component of the VCHP Loop experimental apparatus
Measuring the secondary flow induced by the primary vapor flow, a gas flow transducer (Omega FMA 1702A) is mounted in the line of the external NCG loop. This flow meter has no moving parts and uses thermal-based technique to measure gas flow rate (hot wire anemometry). The measurement range of this flow meter is 0 to 10 cc/min. A very important fact is that this flow meter measures flow in only one direction. It allows however reverse flow but it reports “zero” flow rate in the DAQ system.
B. Thermal Control Capability Demonstration
Figure 12. (a) VCHP test loop operation at 80 W with step change in sink temperature (b) Instantaneous heat pipe temperatures of VCHP test loop at 75 °C hot sink temperature and -10 °C cold sink temperature
A thermal control testing is performed to assess/verify that adding an external NCG loop to hot reservoir VCHPs will not compromise the thermal control capability of the VCHP. Figure 12(a) shows the operation of the VCHP loop at 80 W. At t = 2200 seconds, sink temperature is suddenly decreased from 75 °C to -10 °C. As the figure shows, the variation of evaporator temperature is less than 10 °C. Instantaneous temperature profiles\ of the heat pipe at steady state before and after a decrease of sink temperature are shown in Figure 12(b). It can be observed that the vapor NCG front is located beyond the end of the condenser during the hot sink temperature mode before the step change. Then, the vapor NCG-front moves to reduce the active condenser length after the sink temperature drops. The new front is located at end of the adiabatic section. Based on these test results, it is reasonable to state that adding an external NCG loop to a hot reservoir VCHP has minimal impact on its thermal control capability.
C. Flow Measurements
Figure 13 shows the temperature evolution of the Loop VCHP and the corresponding flow rate measured by the flow meter. For this test, an amount of 6 ml of acetone was charged.
- As the vapor/NCG is established within the condenser (shown as a purple line merging with the light blue line), an oscillating flow is observed.
- The amplitude of oscillations is at around 1.5 sccm before the valve connecting heat pipe and loop is closed.
- Immediately after closing the valve (t =8200 sec), the amplitude dramatically increases.
- As mentioned above, the flow meter cannot detect the flow in the opposite direction. All the “zero” values observed in this plot indicate that a reverse flow is passing the flow meter.
Figure 13. Temperature of VCHP Loop vs. secondary flow rate
Flow test results reveal that the flow within the current Loop VCHP is a pulsating flow. One of the probable causes of these pulses is the puddle formation in the evaporator. Since the heat pipe is slightly tilted, the excess working fluid liquid will accumulate at the bottom of evaporator and form a puddle. The expansion and collapse of bubbles might generate pressure waves. Another hypothesis of the origin of these pressure waves is the liquid slug forming in the condenser. Both phenomenon (puddle and slug formation within a heat pipe) are gravity-dependent and related to wick design. In microgravity, puddles and slugs might not form within a wicked heat pipe (either sintered powder or screen). However, liquid bodies and slugs could form within a grooved heat pipe in microgravity. Further investigation/assessements are needed for future space and planetary applications. This pressure wave generated from the heat pipe section propagates through the NCG tubes. The response of flow in the NCG tube will change depending on the status of the valve
- If the valve is open, the pressure wave will propagate through both sides of NCG tube (external and internal) and partially cancel each other. The amplitude of the pulses is small.
- If the valve is closed, pressure wave will propagate through only one side of NCG tube (internal) and the flow meter will experience a higher amplitude of oscillation.
Based on this finding, two potential mechanisms associated with Loop VCHP configuration to induce/enhance a net flow for purging are identified:
- Flow induced by the momentum generated in the NCG tube through pressure variation (original mechanism). This mechanism is called “DC” mechanism.
- Flow induced by filtering (via a Tesla or a check valve) the pulse generated within the heat pipe section. This mechanism is called “AC” mechanism.
Note that the DC and AC mechanisms are independent in this context, meaning that they can be superimposed to induce a higher net mass flow rate within a loop VCHP.
D. Momentum Transfer Flow (DC Mechanism) Identification
Figure 14. Momentum transport induced flow rate increases as the heat input increases
The flow induced by DC mechanism is embedded within the total flow with pulses. In order to detect the flow, it is necessary to minimize the amplitude of the pulses. This is done by inserting a layer of screen mesh into the evaporator section and minimizing fluid inventory to avoid puddle formation in the evaporator. Test results are shown in Figure 14. The red line represents the heat input to the evaporator and the blue line represents the induced net flow rate. With a 2 ml of working fluid inventory, pulse amplitude is minimized to be within the resolution of the flow meter. A clear relationship between the induced flow rate and the heat input can be identified. The flow rate of induced flow increases as the heat input increases. With 72W of heat input, the net flow velocity being induced is 0.8 cm/min (0.13 mm/s). All the evidence points to the same conclusion: there is a net flow induced by the momentum transfer from the vapor to NCG within the Loop VCHP. The existence of DC flow is successfully proven.
V. Prototype Development and Performance Demonstration
Figure 15. (a) Hot Reservoir VCHP Loop prototype (b) testing system
A hot Reservoir VCHP loop prototype is then developed for concept demonstration, which is shown in Figure 15(a). This VCHP prototype has an integrated reservoir similar to the VCHPs previously developed under another NASA Phase II program. This prototype consists of several parts, including reservoir, condenser, internal NCG tube, heat pipe adiabatic section and the external NCG tube. These parts are joined by Swagelok fittings, so they can be exchangeable. The working fluid is acetone and NCG is helium. No wick structure is inserted within the heat pipe adiabatic and condenser sections. liquid return is simply achieved by gravity. Similar to the loop VCHP experimental setup, a layer of screen is inserted into the evaporator to avoid puddle formation. There are two fill tubes in this prototype: one fill tube attached to the end of the condenser is for working fluid and NCG charging; another fill tube welded on the top of the reservoir is used for the purging test only. The experimental system for VCHP prototype testing is shown in Figure 15(b). Heating to the evaporator is provided by a heater block from the bottom of the evaporator. The cooling of the condenser is provided by a chiller block. The instrumentation includes 25 T-type TCs and the flow meter to measure the induced flow rate through the NCG loop. Two DAQ systems (one for temperature and one for flow meter) are simultaneously operating to collect both temperature and flow data.
Figure 16. Purging performance of Hot Reservoir VCHP Loop
The purging performance of this prototype was tested and the result are shown in Figure 16. At t=t0, heat input incrementally increases from 110W to 140W. At t=t1, 0.3 ml of acetone, which is 12% of the working fluid inventory is directly injected into the reservoir. Immediately, payload temperatures increase and condenser temperatures decrease, meaning that the vapor front is pushed towards the adiabatic section decreasing the active length of the condenser. Monitoring payload temperature decaying rate between t2 and t3 it can be observed that the average dropping rate is around -4°C in 3000 seconds. The corresponding induced flow rate measured by the flow meter is around 0.16 ml/min. Compared to a regular hot reservoir VCHP without a loop, the purging speed of this prototype is 6.7 times faster. This test results conclude that new loop configuration and the induced flow concept does improve the purge rate and reliability of VCHP.
Still, there is significant room for improvement. ACT and CWRU team believe that an even higher induced flow can be achieved by design optimization and implementation of other features (e.g. pulse filtering devices and nozzles etc.). Figure 17 below shows how effective the purging process would be if a transport flow can be induced within the Loop VCHP. This calculation assumes that an NCG reservoir volume of 100 c.c. contains 50% of vapor initially and the internal NCG tube (with 0.18”ID) has a length of 50 cm. Purging by diffusion will take roughly 24 hours to reduce vapor concentration within the reservoir from 50% to 35%. If a 0.5 mm/s of transport flow can be induced within the loop VCHP, it will only take 6 hours to achieve the same level of concentration reduction (from 50% to 35%). If a 20 mm/s flow velocity within a VCHP loop can be achieved (through superimposing DC and AC mechanisms discussed above), purging time can be significantly reduced to less than 10 mins. To achieve a higher flow rate in the loop VCHP, the ACT-CWRU team plans to (1) systematically study the momentum induced flow and identify influential design parameters (2) develop features that can amplify the momentum induced flow and (3) develop pules filtering devices to obtain a net flow from pulses.
VI. Conclusion
Figure 17. Convection-based purging rate vs. diffusion-based purging rate
Under this STTR Phase I, ACT and CWRU performed a fundamental investigation to understand the complex transport phenomena within a hot reservoir VCHP. In order to address the slow purging problem of a hot reservoir VCHP, a novel loop configuration is developed that uses an external NCG tube connecting the reservoir and the condenser to create a closed flow path for NCG to replenish the reservoir. With the loop configuration, the momentum of vapor within the heat pipe section will generate a pressure difference that can induce a net NCG flow in a favorable direction for reservoir purging (i.e. removal of vapor from the reservoir). Modeling results demonstrate the possibility of flow generation through momentum transport/transfer in a Loop hot reservoir VCHP. A Loop VCHP experiment is performed and the following key findings are identified:
- Thermal control capability of hot reservoir VCHP is not affected by adding a loop.
- Flow within a hot reservoir VCHP loop is pulsating.
- The momentum transfer based induced flow is successfully identified using an accurate gas flow meter.
In addition, two independent mechanisms that can induce a net flow are identified:
- By the momentum transfer from the vapor to NCG through shearing. This mechanism is called “DC” mechanism .
- By filtering the pulses generated within Loop VCHP, using a fluid diode (e.g. Tesla valve). This mechanism is called “AC” mechanism.
These two mechanisms are independent, so they can be superimposed to induce a higher flow rate for purging. A proof-of-concept prototype that has an integrated evaporator and reservoir design similar to the hardward tested at ISS is developed. The thermal control capability and momentum induced flow of the prototype are experimentally demonstrated. The reliability of the prototype is also tested, which shows a 6.7 times of purging rate improvement compared to regular hot reservoir VCHP without loop and induced flow. If a 20 mm/s flow velocity within a VCHP loop can be achieved (through superimposing DC and AC mechanisms discussed above), purging time can be significantly reduced to less than 10 mins.
Acknowledgments
This project is sponsored by NASA Marshall Space Flight Center (MSFC) under an STTR Phase I program (Contract# 80NSSC18P2155). We would like to thank the program manager, Brian O’Connor and Dr. Jeff Farmer for their supports and valuable inputs during the program. Special appreciation goes to Philip Texter and Chris Jarmoski who have provided significant technical contributions to the program.
References
[1] Tarau C., Schwendeman C. L., Schifer N.A., Polak J. and Anderson W.G., “Optimized Back up Cooling System for the Advanced Stirling Radioisotope Generator”, in International Energy Conversion Engineering Conference (IECEC), 2015
[2] Tarau C., Schwendeman C. L., Anderson W.G., Cornell P.A. and Schifer N.A., “Variable Conductance Heat Pipe Operated with Stirling Convertor”, in IECEC, 2013
[3] Tarau C. and Anderson W.G., “Variable Conductance Thermal Management System for Balloon Payload”, in 20th AIAA Ligher-Than-Air Systems Technology Confernece, 2013
[4] Tarau C., Ababneh M.T., Anderson W.G., Alvarez-Hernandez A.R., Ortega S., Farmer J.T. and Hawkins R., “Advanced Passive Thermal eXperiment (APTx) for Warm-Reservoir Hybrid-Wick Variable Conductance Heat Pipes on the International Space Station (ISS)” in 48th International Conference on Enviornmental Systems (ICES), 2018
Thickness-Dependent Raman Scattering from Thin-Film Systems
Published by Nathan Van Velson, Hamidreza Zobeirie, & Xinwei Wang, Journal of Physical Chemistry C, Vol. 127, Issue 6, pp. 2295-3304 (2023)
View Full PaperA Smoothed Particle Hydrodynamics Approach for Efficient 3D Process Modeling of Linear Friction Welding
Presented at AIAA SciTech, National Harbor, MD, 23-27 January, 2023 - Presented by Quang Truong and Srujan Rokkam - Michael Eff - Edison Welding Institute
Download PDFDEVELOPMENT OF A LARGE-SCALE THERMOSYPHON FOR COOLING THE FAULT MANAGEMENT SYSTEM OF A MW-SCALE ELECTRIC AIRCRAFT
Presented at AIAA SciTech Forum - 23-27 January 2023, National Harbor, MD & Online - AIAA SCITECH 2023 Forum - by Jeff Diebold, Brett Leitherer, Calin Tarau, and Kuan-Lin Lee
Download PDFElectric Aircraft Thermal Management Using a Two-Phase Heat Transport System with Solid-State Thermal Switching Capability
Advanced Cooling Technologies, Inc. (ACT) is collaborating with NASA Glenn Research Center (GRC) to develop a heat pipe-based thermal delivery system to efficiently manage the waste heat generated onboard an electric aircraft. Jeffrey Diebold, Calin Tarau, Kuan-Lin Lee, and William G. Anderson, Advanced Cooling Technologies, Inc., Lancaster, PA, 17601, Rodger W. Dyson, NASA Glenn Research Center, Cleveland, OH, 44035
Download PDFDBD plasma-assisted ethanol steam reforming for green H2 production: process optimization through response surface methodology (RSM)
This work investigates ethanol steam reforming (ESR) to produce hydrogen (H2) in a dielectric barrier discharge (DBD) plasma reactor. Guoqiang Cao, Yue Xiao, Wei-Min Huang, Chien-Hua Chen and Jonas Baltrusaitis,* Department of Chemical and Biomolecular Engineering, Lehigh University, Advanced Cooling Technologies, Inc., Department of Mathematics, Lehigh University.
Download PDFSimulation of a Heat Pipe Test Fixture: Laminar, Internal, Forced Convection in a Tubed Cold Plate
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM) 2022, Joshua Smay
View Full PaperDevelopment and Testing of a Thermal Battery Utilizing Concrete and Thermosiphons for Power Plant Flexibilization
CLEARWATER CLEAN ENERGY, Florida, USA, Project: Concrete Energy Storage. August 2022 In collaboration with Lehigh University
Download PDF View Full PaperEXPERIMENTAL AND MODELLING ANALYSIS OF A LARGE-SCALE TWO-PHASE LOOP THERMOSYPHON
Proceedings of the ASME 2022 Heat Transfer Summer Conference, SHTC2022. July 11-13, 2022, Philadelphia, Pennsylvania. Debraliz Isaac Aragones, Chien-Hua Chen, Justin A. Weibel, David M. Warsinger, Richard W. Bonner
Download PDFAdvanced Two-Phase Cooling System for Modular Power Electronics
51st International Conference on Environmental Systems ICES-2022, 10-14 July 2022, St. Paul, Minnesota. Kuan-Lin Lee, Sai Kiran Hota, Andrew Lutz and Srujan Rokkam
Download PDF View Full PaperStatus of Development of a Thermal Probe for Icy Planet Exploration – II
51st International Conference on Environmental Systems ICES-2022, 10-14 July 2022, St. Paul, Minnesota. Calin Tarau, Kuan-Lin Lee, Brett Leitherer, Krishna Chetty, Andy Lutz, and Srujan Rokkam,
Download PDFExperiments on a Loop Heat Pipe with a 3D Printed Evaporator
51st International Conference on Environmental Systems ICES-2022, 10-14 July 2022, St. Paul, Minnesota. Rohit Gupta, Chien-Hua Chen, and William G. Anderson.
Download PDFWaste Heat-Based Thermal Corer for Lunar Ice Extraction
51st International Conference on Environmental Systems ICES-2022, 10-14 July 2022, St. Paul, Minnesota. Kuan-Lin Lee, Quang Truong, Sai Kiran Hota, Srujan Rokkam. Kris Zacny, Honeybee Robotics, Altadena, CA.
Download PDFIntegrated Hot Reservoir Variable Conductance Heat Pipes with Improved Reliability
51st International Conference on Environmental Systems ICES-2022, 10-14 July 2022, St. Paul, Minnesota. Kuan-Lin Lee, Calin Tarau, William Anderson- ACT. Cho-Ning Huang, Chirag Kharangate and Yasuhiro Kamotani, Case Western Reserve University, Cleveland, OH
Download PDFVapor-Venting Thermal Management System for Sample Return Missions
51st International Conference on Environmental Systems, ICES-2022, 10-14 July 2022, St. Paul, Minnesota. Jeff Diebold and Calin Tarau.
Download PDFFabrication and Experimental Testing of Variable-View Factor Two-Phase Radiators
51st International Conference on Environmental Systems, ICES-2022, 10-14 July 2022, St. Paul, Minnesota. Jeff Diebold, Calin Tarau, Andrew Lutz and Srujan Rokkam, Advanced Cooling Technologies, Inc., Michael Eff and Lindsey Lindamood Edison Welding Institute, Columbus, OH.
Download PDFNon-Integrated Hot-Reservoir Variable Conductance Heat Pipes
51st International Conference on Environmental Systems, ICES-2022, 10-14 July 2022, St. Paul, Minnesota, Jeff Diebold, Calin Tarau, Joshua Smay, Timothy Hahn, and Ryan Spangler
Download PDFSynthesis and Characterization of the Magnesium/Boron Solid Solutions for Energetic Applications
Prawal P. K. Agarwal, Devon Jensen, Chien-Hua Chen, Robert M. Rioux, Themis Matsoukas. In collaboration with Penn State University.
Download PDFCO2 conversion to syngas via electrification of endothermal reactors: Process design and environmental impact analysis
Energy Conversion and Management, Volume 265, 1 August 2022, 115763
View Full PaperDemonstration of a Passive Loop Cooling Tower
Ojas Govardhan, Chien-Hua Chen, Josh Charles, Sean Hoeing, Mike Ellis, and Richard Bonner. "Demonstration of a Passive Loop Cooling Tower" Cooling Technology Insititute. 2022 Cooling Technology Institute Annual Conference. Paper No: TP22_11 Category: Dry Cooling.
Download PDF View Full PaperDevelopment of a Non-Catalytic JP-8 Reformer
Chien-Hua Chen, Joel Crawmer, Brad Richard, Howard Pearlman, Paul Ronney. "Development of a Non-Catalytic JP-8 Reformer." 2018 NDIA Ground Vehicle Systems Engineering and Technology Symposium. Power and Mobility Technical Sessions.
View Full PaperProgress on the Development of a “Swiss-Roll” Fuel Reformer for Syngas Production
Chien-Hua Chen, Bradley Richard, Ying Zheng, Howard Pearlman, Shrey Trivedi, Srushti Koli, Andrew Lawson, Paul Ronney. "Progress on the Development of a “Swiss-Roll” Fuel Reformer for Syngas Production." ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. ISBN: 978-0-7918-5032-9
View Full PaperA Novel TPOX-Based “Swiss-Roll” Fuel Reformer
Chien-Hua Chen, Howard Pearlman, Paul Ronney. "A Novel TPOX-Based "Swiss-Roll" Fuel Reformer." AICHE Annual Meeting.
View Full PaperA Fuel Flexible Reforming System for Portable Scale SOFC
Chien-Hua Chen, Howard Pearlman, Shakya Sur, Jordan Thayer, Shrey Trivedi, Paul Ronney, Ioannis Valsamakis, Maria Flytzani-Stephanopoulos. "A Fuel Flexible Reforming System For Portable Scale SOFC" 2013 NDIA Ground Vehicle Systems Engineering and Technology Symposium
View Full PaperA “Scale-Up” Swiss-roll Combustor and It’s Application in Waste Gas Incineration
Joel Crawmer, Chien-Hua Chen, Bradley Richard, Howard Pearlman, Paul Ronney. Thomas Edwards "2018 ESSCI Swiss-roll JP-8 Fuel Reformer with Direct Center Fuel Injection and Mixing Chamber Design". Spring Technical Meeting Eastern States Section of the Combustion Institute. State College, Pennsylvania.
Download PDFSwiss-roll JP-8 Fuel Reformer with Direct Center Fuel Injection and Mixing Chamber Design
Joel Crawmer, Chien-Hua Chen, Bradley Richard, Howard Pearlman, Paul Ronney. "2018 ESSCI Swiss-roll JP-8 Fuel Reformer with Direct Center Fuel Injection and Mixing Chamber Design". Spring Technical Meeting Eastern States Section of the Combustion Institute. State College, Pennsylvania.
Download PDFA fast dynamic model for a large scale heat pipe embedded latent heat thermal energy storage system for optimal sizing and control
Chunjian Pan, Natasha Vermaak, Xingcaho Wang, Carlos Romero, Sudhakar Neti, Chien-Hua Chen, Richard Bonner, "A Fast Dynamic Model For a Large Scale Heat Pipe Embedded Latent Heat Thermal Energy Storage System For Optimal Sizing and Control." Journal of Energy Storage. 2022
Download PDF View Full PaperTechno-economic assessment of carbon-based nanofluid dispersions in sola
Sain Kiran Hotaa, Carlos Mata-Torres, Jese Miguel Cardemilb, Gerardo Diaz, "Techno-Economic Assessment of Carbon-Based Nanofluid Dispersions in Sola." Desalination and Water Treatment, doi: 10.5004.
View Full PaperRaman Probing with Consideration of Optical–Acoustic Phonon Nonequilibrium
2D interfacial energy transport between monolayer WSe2 and SiO2 while considering the thermal nonequilibrium between optical and acoustic phonons caused by photoexcitation. Author: Nathan Van Velson
Download PDF View Full PaperProgress on 3D Printed Loop Heat Pipes
Gupta, R., Chen, C-H., and Anderson, W.G., "Progress on 3D Printed Loop Heat Pipes." Proceedings of the 50th International Conference on Environmental Systems, ICES-2021-154, 2021.
Download PDF View Full PaperAssessment of pyrolytic biochar as a solar absorber material
Although several materials have been proposed for the purpose of increasing the rate of water evaporation. Authors: Sai Kiran Hota and Gerardo Diaz, 2021.
View Full PaperLOOP THERMOSYPHON DESIGN FOR SOLAR THERMAL DESALINATION
Josh Charles and Nathan Van Velson, 5-6th Thermal and Fluids Engineering Conference (TFEC), pages 239-248. (video presentation included).
Download PDF View Full PaperInterfacial thermal resistance between nm-thick MoS2 and quartz substrate: A critical revisit under phonon mode-wide thermal non-equilibrium.
Hamidreza Zobeiria, Nicholas Hunter, Nathan Van Velson, Cheng Deng, Qianying Zhang, Xinwei Wang, Nano Energy, V.89, Part A, November 2021, 106364.
View Full PaperDevelopment of Solid-State Waste Heat Delivery System for Electric Aircraft
Heat pipe-based thermal delivery system to efficiently manage the waste heat of an electric aircraft.
Download PDF View Full PaperHot Reservoir Variable Conductance Heat Pipe with Advanced Fluid Management
Advanced Cooling Technologies, Inc. (ACT) in collaboration with Case Western Reserve University (CWRU) is developing a reliable VCHP configuration under the NASA STTR program. Presented at: 50th International Conference on Environmental Systems ICES-2021-242, 12-15 July 2021
Download PDF View Full PaperThermal Management System for Lunar Ice Miners
Presented at: 50th International Conference on Environmental Systems ICES-2021-235, 12-15 July 2021
Download PDF View Full PaperADVANCED WASTE HEAT RECOVERY TECHNOLOGY BY THERMO-RADIATIVE CELL FOR NUCLEAR SPACE POWER APPLICATIONS
In order to satisfy the long-lasting and high energy/power density requirements for NASA deep space exploration missions, Pu-238 has been identified as one of the most suitable radioisotope fuels for GPHS modules since the 1960s. Knoxville, TN, April 6 – April 9, 2020, available online at https://nets2020.ornl.gov
Download PDF View Full PaperDevelopment of a Passive Thermal Control Valve for 3D-Printed Loop Heat Pipes
The focus of this work is the development of a passive thermal control valve (TCV) integrated with the design of a 3D-Printed LHP evaporator. (ICES) 2021, Virtual, July 12-15, 2021.
Download PDF View Full PaperDevelopment of a Cold Plate for Spatial and Temporal Temperature Uniformity
Development of a cold plate which, through variable thermal conductance, provides spatial and temporal temperature uniformity to address this need. (ICES) 2021, Virtual, July 12-15, 2021.
Download PDFA Variable-View-Factor Two-Phase Radiator Manufactured Via Ultrasonic Welding
ACT in collaboration with Edison Welding Institute is developing a manufacturing process for the VVFTPR. This paper describes the ultrasonic welding technique chosen for manufacturing as well as material choices and other considerations. In collaboration with Edison Welding Institute, Columbus, Ohio. (ICES) 2021, Virtual, July 12-15, 2021
Download PDF View Full PaperPumped 2-Phase Cooling as an Enabler for a Modular, Medium- Voltage, Solid-State Circuit Breaker
In collaboration with Eaton Research Labs, USA, ACT's Andy Slippey and Devin Pellicone presented Pumped Two-Phase Cooling as an enable for Modular, Medium Voltage, Solid-State Circuit Breaker. PCIM Europe digital days 2021, 3 – 7 May 2021 I http://www.pcim-europe.com/
Download PDFTHERMALLY-DRIVEN EJECTOR FOR VACUUM FREEZING DESALINATION AT THE TRIPLE POINT
Jianjian Wang, Fangyu Cao, "Thermally-Driven Ejector for Vacuum Freezing Desalination at the Triple Point," 5th Thermal and Fluids Engineering Conference (TFEC), 2020-32060.
Download PDF View Full PaperComputational Fluid Dynamics Model for a Variable Conductance Thermosyphon
Cho-Ning Huang, Kuan-Lin Lee, Calin Tarau, Yasuhiro Kamotani and Chirag R. Kharangate, "Computational Fluid Dynamics Model for a Variable Conductance Thermosyphon", Case Studies in Thermal Engineering, vol 25, 2021.
Download PDFTechnoeconomic Benefits of Film-Forming Amine Products Applied to Steam Surface Condensers
Sean H. Hoenig, et al., PPCHEM Journal-23 2021/01, pp. 4-16.
Download PDFSurface-Functionalized Boron Nanoparticles with Reduced Oxide Content by Nonthermal Plasma Processing for Nanoenergetic Applications
Prawal P. K. Agarwal, Devon Jensen, Chien-Hua Chen, Robert M. Rioux, and Themis Matsoukas; ACS Applied Materials & Interfaces Article ASAP, DOI: 10.1021/acsami.0c20825
Download PDF View Full PaperDevelopment of Variable-View-Factor and Deployable Two-Phase Radiator
Jeff Diebold, Calin Tarau, Andrew Lutz and Srujan Rokkam, “Development of Variable-View-Factor and Deployable Two-Phase Radiator", ICES 2020-317
Download PDFModeling of a Loop Thermosyphon Supplying Solar Energy to a Desalination Boiler
Josh Charles et al., SolarPaces, September 29, 2020, https://2020.solarpaces-conference.org/home.html
Download PDF View Full PaperTurbulent flow and heat flux analysis from validated large eddy simulations of flow past a heated cylinder in the near wake region
Arpan Sircar, Mark Kimber, Srujan Rokkam, and Gerrit Botha, Physics of Fluids 32, 125119 (2020)
View Full PaperPlasma-Assisted Dry Methane Reforming for Syngas Production
Howard Pearlman et al., Spring Technical Meeting of the Eastern States Section of the Combustion Institute, March 8-11, 2018.
Download PDFDirect Simulations of Biphilic-Surface Condensation: Optimized Size Effects
Zijie Chen, Sanat Modak, Massoud Kaviany, Richard Bonner, “Direct Simulations of Biphilic-Surface Condensation: Optimized Size Effects” Frontiers in Heat and Mass Transfer (FHMT), vol 14, 2020/2/27
Download PDFCooling High Power Processing Devices Onboard Satellites: Testing Considerations for Space Copper-Water Heat Pipes (SCWHPs)
Pete Dussinger, Jens Weyant, Ryan Spangler. Advanced Cooling Technologies, Inc., (Lancaster, PA).
Download PDF View Full PaperRigorous prediction of Raman intensity from multi-layer films
Nathan Van Velson, Hamidreza Zobeiri, and Xinwei Wang Optics Express Vol. 28, Issue 23, pp. 35272-35283 (2020)
Download PDF View Full PaperDevelopment of High Heat Flux Titanium-Water CCHPs
Andrew Lutz et al., International Conference on Environmental Systems, ICES-2020-323. (2020)
Download PDF View Full PaperAdvanced Hot Reservoir Variable Conductance Heat Pipes for Planetary Landers
Kuan-Lin Lee et al. , International Conference on Environmental Systems, ICES-2020-579. (2020)
Download PDF View Full PaperThermal Concept for Planetary Ice Melting Probe
Kuan-LinLee et al., International Conference on Environmental Systems, ICES-2020-201. (2020)
Download PDF View Full PaperRole of substrate thermal conductivity and vapor pressure in dropwise condensation
Sean H. Hoenig et al., Applied Thermal Engineering, Vol. 178, September 2020, 115529
View Full PaperInnovative Solutions to Meet Thermal Performance of High-Power Laser Systems
Bryan Muzyka, SPIE Photonics West, San Francisco, CA, February 1-6, 2020.
Download PDF View Full PaperTitanium-Water Heat Pipe Radiators for Space Fission Power System Thermal Management
Lee, K., Tarau, C., Anderson, W.G. et al., Microgravity Science Technology. (2020)
View Full PaperThin hybrid capillary two-phase cooling system
Mohammad Reza Shaeri, et al., International Communications in Heat and Mass Transfer, 112, March 2020, 104490
View Full PaperVertical Surface Dropwise Condensation Heat Transfer Using Self-Healing Coatings
Sean H. Hoenig et al., 19th IAHR International Conference on Cooling Towers and Heat Exchangers , Washington, DC, October 8-10 2019
Download PDF View Full PaperThermoradiative Cell – A New Waste Heat Recovery Technology for Space Power Applications
Jianjian Wang et al., International Energy Conversion Engineering Conference, Indianapolis, IN, August 19-22 2019
Download PDFA Systems Study of a Stirling Convertor based Space Nuclear Power System
Joesph VanderVeer et al., International Energy Conversion Engineering Conference, Indianapolis, IN, August 19-22 2019
Download PDF View Full PaperPrototype Results for a Salt Hydrate PCM Thermal Energy Storage System
Sean Hoenig et al., ASME 2019 Summer Heat Transfer Conference (HT2019), Bellevue, WA, July 15-18 2019
Download PDF View Full PaperVariable-View-Factor Two-Phase Radiator
Andrew Lutz et al., 49th International Conference on Environmental Systems (ICES), Boston, Massachusetts, July 7-11 2019
Download PDF View Full PaperDevelopment of a 3D Printed Loop Heat Pipe
Bradley Richard et al., 49th International Conference on Environmental Systems (ICES), Boston, Massachusetts, July 7-11 2019
Download PDF View Full Paper24 Hour Consumable-based Cooling System for Venus Lander
Kuan-Lin Lee and Calin Tarau, 49th International Conference on Environmental Systems (ICES), Boston, Massachusetts, July 7-11 2019
Download PDF View Full PaperThermal Control of Lunar and Mars Rovers/Landers Using Hybrid Heat Pipes
Mohammed T. Ababneh et al, Journal of Thermophysics and Heat Transfer, Vol. 33(3), July 2019
View Full Paper3D Printed Thermal Management System for the Next Generation of Gallium Nitride-Based Solid State Power Amplifiers
Mohammed T. Ababneh et al., 49th International Conference on Environmental Systems (ICES), Boston, Massachusetts, July 7-11 2019
Download PDF View Full PaperPerformance Evaluation of a Loop Thermosyphon Based Heat-Sink for High Power SiC-based Converter Applications
Sayan Acharya, et al., IEEE: Transactions on Components, Packaging and Manufacturing Technology, June 17 2019, 1-1
View Full PaperDevelopment of a 3D Printed Loop Heat Pipe
Bradley Richard, et al., Semi-Therm, San Jose, CA, March 18 – 22 2019
Download PDF View Full PaperEnhanced vacuum freezing for thermal desalination at the triple point
Fangyu Cao and Jianjian Wang, 4th Thermal & Fluids Engineering Conference, Las Vegas, NV, April 14-17 2019
Download PDFAdvances in Lightweight Heat Sinks
Mohammad Reza Shaeri and Richard Bonner, 4th Thermal & Fluids Engineering Conference, Las Vegas, NV, April 14-17 2019
Download PDFA Nonlocal Peridynamics Modeling Approach for Corrosion Damage and Crack Propagation
Srujan Rokkam, et al., Theoretical and Applied Fracture Mechanics, 101, 2019, 373–387 (2019)
View Full PaperVortex dynamics and heat transfer of longitudinal vortex generators in a rectangular channel
Zhaoqing Ke, et al., International Journal of Heat and Mass Transfer, 132, 875-885 (2019)
View Full PaperMeshless Peridynamics Method for Modeling Corrosion Crack Propagation
Srujan Rokkam, et al., 6th International Crack Paths Conference, Verona, Italy, September 19-21 2018
Download PDFBio-inspired self-agitator for convective heat transfer enhancement
Zheng Li et al., Applied Physical Letters 113, 113703 (2018)
Download PDF View Full PaperCorrosion testing of metals in contact with calcium chloride hexahydrate used for thermal energy storage
S. J. Ren et al., Materials and Corrosion, Volume 68, Issue 10, July 2017
View Full PaperThermal energy storage with tunable melting point phase change materials
Fangyu Cao et al., Proceedings of the 16th International Heat Transfer Conference, Bejing, China, August 10-15, 2018
Download PDFLoop Heat Pipe Wick Fabrication via Additive Manufacturing
Bradley Richard et al., 48th International Conference on Environmental Systems, Albuquerque, New Mexico, July 8-12, 2018
Download PDFDesign Analysis and Performance testing of a Novel Passive Thermal Management System for Future Exploration Missions
Angel R. Alvarez-Hernandez et al., International Conference on Environmental Systems, Albuquerque, NM July 8-12, 2018
Download PDFHigh-Heat-Flux (> 50 W/cm2) Hybrid Constant Conductance Heat Pipes
Mohammed T. Ababneh et al. International Conference on Environmental Systems, Albuquerque, NM, July 8-12, 2018
Download PDFDemonstration of Copper-Water Heat Pipes Embedded in High Conductivity (HiK™) Plates in the Advanced Passive Thermal eXperiment (APTx) on the International Space Station (ISS)
Mohammed T. Ababneh et al., International Conference on Environmental Systems, Albuquerque, NM July 8-12, 2018
Download PDFAdvanced Passive Thermal eXperiment (APTx) for Warm-Reservoir Hybrid-Wick Variable Conductance Heat Pipes on the International Space Station (ISS),”
Calin Tarau, et al., International Conference on Environmental Systems (ICES 2018), Albuquerque, NM July 8-12, 2018
Download PDFApparatus for Characterizing Hot Surface Ignition of Aviation Fuels
Andrew Slippey et al., AIAA Propulsion and Energy Forum, (AIAA 2018-4708), Cincinnati, OH, July 9-12, 2018
Download PDF View Full PaperTitanium Water Heat Pipe Radiators for Space Fission System Thermal Management
Kuan-Lin Lee, et al., 19th International Heat Pipe Conference, Pisa, Italy, June 10-14, 2018
Download PDFCopper-Water and Hybrid Aluminum-Ammonia Heat Pipes for Spacecraft Thermal Control Applications
Mohammed Ababneh, et al., 19th International Heat Pipe Conference, Pisa, Italy, June 10-14, 2018
Download PDFLoop Heat Pipe Wick Fabrication via Additive Manufacturing
Bradley Richard, et al., 19th International Heat Pipe Conference, Pisa, Italy, June 10-14, 2018
Download PDFMeshless Computational tools for Fatigue Damage and Failure Modeling
Srujan Rokkam et al., ITHERM 2018 (17th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems), San Diego, CA, May 29 – June 1
Download PDFThermal Management Technologies for Embedded Cooling Applications
Andy Slippey et al., ITHERM 2018 (17th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems), San Diego, CA, May 29 – June 1
Download PDFExperimental Investigation of Gravity-Driven Two-Phase Cooling for Power Electronics Applications
Devin Pellicone, PCIM 2018, Nuremberg, Germany, June 5-7, 2018.
Download PDF View Full PaperExperimental, Numerical and Analytic Study of Unconstrained Melting in a Vertical Cylinder with a Focus on Mushy Region Effects
Chunjian Pan,⇑, Joshua Charles, Natasha Vermaak, Carlos Romero, Sudhakar Neti, Energy Research Center, Lehigh University, Bethlehem, PA 18015, USA Ying Zheng, Chien-Hua Chen, Richard Bonner III, Advanced Cooling Technologies, Inc., Lancaster, PA 17601, USA International Journal of Heat and Mass Transfer, Accepted 2 April 2018
Download PDFA Non-Thermal Gliding Arc Plasma Reformer for Syngas Production
Howard Pearlman, 3rd Thermal and Fluids Engineering Conference (TFEC), Fort Lauderdale, FL, March 4-7, 2018
Download PDFAn Innovative Volatile Organic Compound Incinerator
Joel Crawmer et al., International Thermal Treatment Technologies (IT3), Houston, TX, March 6-8 2018
Download PDFDeveloping High-Temperature Water-Repellent Glass Fibers Through Atomic Layer Deposition
Mohammad Reza Shaeri et al., 3rd Thermal and Fluids Engineering Conference (TFEC), Fort Lauderdale, FL, March 4-7, 2018.
Download PDFDropwise Condensation on Hydrophobic Microporous Powder and the Transition to Intrapowder Droplet Removal
Sean Hoenig and Richard W. Bonner, III, 3rd Thermal and Fluids Engineering Conference (TFEC), Fort Lauderdale, FL, March 4-7, 2018.
Download PDFThe Key Role of Pumping Power in Active Cooling Systems
Mohammed Reza Shaeri, 3rd Thermal and Fluids Engineering Conference (TFEC), Fort Lauderdale, FL, March 4-7, 2018.
Download PDFNucleating agent enhanced thermal desalination at the triple point
Fangyu Cao et al., 3rd Thermal and Fluids Engineering Conference (TFEC), Fort Lauderdale, FL, March 4-7, 2018
Download PDFTitanium Water Heat Pipes for Space Fission Power Cooling
Kuan-Lin Lee et al. ANS NETS 2018 – Nuclear and Emerging Technologies for Space Las Vegas, NV, February 26 – March 1, 2018
Download PDF View Full PaperDropwise Condensation on Superhydrophobic Microporous Wick Structures
Sean Hoenig, Richard Bonner, Ph.D., ASME doi:10.1115/1.4038854 History: Received April 28, 2017; Revised December 06, 2017
Download PDFA Peridynamics-FEM Approach for Crack Path Prediction in Fiber-Reinforced Composites
Srujan Rokkam et al., 2018 AIAA SciTech Forum, Kissimmee, FL, January 8-12, 2018.
Download PDFVapor chambers with hydrophobic and biphilic evaporators in moderate to high heat flux applications
Mohammad Reza Shaeri, Daniel Attinger, Richard W. Bonner III, Applied Thermal Engineering, Volume 130(5), Pages 83-92, February 2018
View Full PaperModel-Based Dynamic Control of Active Thermal Management System
ASME 2017 International Mechanical Engineering Congress and Exposition IMECE 2017 - 71918, November 3-9, 2017 Tampa, FL. Nathan Van Velson, Srujan Rokkam, Quang Truong, Bryan Rasmussen
Download PDFEfficient optimization of a longitudinal finned heat pipe structure for a latent thermal energy storage system
Sean Hoenig et al., Energy Conversion and Management, 153, pp. 93-105, 2017.
View Full PaperThe Electroneutrality Constraint in Nonlocal Models
Eitan Lees, Srujan Rokkam, Sachin Shanbhag, and Max Gunzburger. Journal of Chemical Physics 147, 124102 (2017)
View Full PaperHeat Pipe Embedded Thermoelectric Generator for Diesel Generator Set Waste Heat Recovery
James Schmidt and Mohammed Ababneh. 14th International Energy Conversion Engineering Conference, AIAA Propulsion and Energy Forum, (AIAA 2016-4605)
View Full PaperEfficient Modeling of Phase Change Material Solidification with Multidimensional Fins
C. Pan et al., International Journal of Heat and Mass Transfer, Vol. 115, Part A, pp. 897-909, December 2017.
View Full PaperIntegrated Vapor Chamber Heat Spreader for Power Module Applications
Clayton Hose et al., InterPACK 2017, San Francisco, CA, August 29 – September 1, 2017
Download PDFHeat transfer and pressure drop in laterally perforated-finned heat sinks across different flow regimes
Mohammad Reza Shaeri, Richard Bonner Advanced Cooling Technologies, Inc., Lancaster, PA 17601, United States , Available online 24 August 2017
View Full PaperFeasibility Study of a Vapor Chamber with a Hydrophobic Evaporator Substrate in High Heat Flux Applications
Mohammad Reza Shaeria et al., International Communications in Heat and Mass Transfer, Vol. 86, pp. 199–205, 2017.
View Full PaperEffect of Perforation Size to Perforation Spacing on Heat Transfer in Laterally Perforated-Finned Heat Sinks
Mohammed Reza Shaeri, and Richard W. Bonner III, ASME 2017 Summer Heat Transfer Conference (HT2017), July 9-14, 2017, Bellevue, Washington, USA
Download PDFTwo-Phase Heat Exchanger with Thermal Storage Capability for Space Thermal Control System
Two-Phase Heat Exchanger with Thermal Storage Capability for Space Thermal Control System, Kuan-Lin Lee, et al. 47th International Conference on Environmental Systems (ICES 2017), July 16-20, 2017, Charleston, South Carolina
Download PDFAdvanced Passive Thermal Experiment for Hybrid Variable Conductance Heat Pipes and HiK™ Plates on the International Space Station
Advanced Passive Thermal Experiment for Hybrid Variable Conductance Heat Pipes and HiK™ Plates on the International Space Station, Mohammed T. Ababneh, et al. 47th International Conference on Environmental Systems (ICES 2017), July 16-20, 2017, Charleston, South Carolina
Download PDFLHP Wick Fabrication via Additive Manufacturing
LHP Wick Fabrication via Additive Manufacturing. Bradley Richard, et al. 47th International Conference on Environmental Systems (ICES 2017), July 16-20, 2017, Charleston, South Carolina
Download PDFHigh Temperature Water Heat Pipes for Kilopower System
Derek Beard et al., IECEC – AIAA Propulsion and Energy Forum and Exposition (AIAA Propulsion and Energy 2017), July 10-12, Atlanta, Georgia
Download PDFSodium Heat Pipes for Space and Surface Fission Power
Derek Beard, Calin Tarau, and William G. Anderson, IECEC – AIAA Propulsion and Energy Forum and Exposition (AIAA Propulsion and Energy 2017), July 10-12, Atlanta, Georgia
Download PDF View Full PaperLaminar Forced Convection Heat Transfer From Laterally Perforated-Finned Heat Sinks
Mohammad Reza Shaeri and Richard W. Bonner III, Applied Thermal Engineering, Volume 116, pp. 406-418, April 2017.
View Full PaperAn Innovative Volatile Organic Compound Incinerator
Joel Crawmer et al., 10th U. S. National Combustion Meeting, College Park, MD, April 23-26, 2017
Download PDFA Swiss Roll Style Combustion Reactor for Non-Catalytic Reforming
Ryan Zelinsky et al., 10th U. S. National Combustion Meeting, College Park, MD, April 23-26, 2017
Download PDFThermal Resistance Network Model for Heat Pipe-PCM Based Cool Storage System
Sean Hoenig et al., 2nd Thermal and Fluid Engineering Conference (TFEC2017), Las Vegas, NV, April 2-5 2017.
Download PDFDevelopment of Low Cost Radiator for Surface Fission Power
Calin Tarau et al., International Energy Conversion Engineering Conference (IECEC), Salt Lake City, UT, July 25-27, 2016
Download PDFGeneration of amorphous carbon models using liquid quench method: A reactive molecular dynamics study.
Raghavan Ranganathan, Srujan Rokkam, Tapan Desai, Pawel Keblinski Carbon, Volume 113, March 2017, Pages 87–99
Download PDFSelf-Venting Arterial Heat Pipes for Spacecraft Applications
Derek Beard, William G. Anderson, and Calin Tarau, International Energy Conversion Engineering Conference (IECEC), Salt Lake City, UT, July 25-27, 2016
Download PDFHybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications
Mohammed T. Ababneh et al., International Conference on Environmental Systems (ICES) 2016, Vienna. Austria, July 11-14, 2016
Download PDFDevelopment of a Pumped Two-phase System for Spacecraft Thermal Control
Michael C. Ellis and Richard C. Kurwitz, International Conference on Environmental Systems (ICES) 2016, Vienna. Austria, July 11-14, 2016
Download PDFVapor Chamber with Phase Change Material-Based Wick Structure
James Yun, Calin Tarau, and Nathan Van Velson, International Conference on Environmental Systems (ICES) 2016, Vienna. Austria, July 11-14, 2016
Download PDFA Novel Closed System, Pressure Controlled Heat Pipe Design for High Stability Isothermal Furnace Liner Applications
Taylor Maxwell et al., 13th International Symposium on Temperature and Thermal Measurements in Industry and Science (TEMPMEKO 2016), Zakopane, Poland, June 26 – July 1, 2016
Download PDFThermal Enhancements for Separable Thermal Mechanical Interfaces
James Schmidt et al., AIAA Thermophysics Conference, Washington, D.C., June 13-17, 2016
Download PDFThe Design of a Split Loop Thermosyphon Heat Exchanger for Use in HVAC Applications
Daniel Reist et al., Joint 18th International Heat Pipe Conference and 12th International Heat Pipe Symposium, Jeju, Korea, June 12-16, 2016
Download PDF View Full PaperHot Reservoir Stainless-Methanol Variable Conductance Heat Pipes for Constant Evaporator Temperature in Varying Ambient Conditions
Jens Weyant et al., Joint 18th International Heat Pipe Conference and 12th International Heat Pipe Symposium, Jeju, Korea, June 12-16, 2016
Download PDFHybrid Variable and Constant Conductance Heat Pipes for Lunar and Martian Environments and High Heat Flux Space Applications
Mohammed T. Ababneh et al., Joint 18th International Heat Pipe Conference and 12th International Heat Pipe Symposium, Jeju, Korea, June 12-16, 2016
Download PDFSelf-Venting Arterial Heat Pipes for Spacecraft Applications
William G. Anderson et al., Joint 18th International Heat Pipe Conference and 12th International Heat Pipe Symposium, Jeju, Korea, June 12-16, 2016
Download PDFPerformance Life Testing of a Nanoscale Coating for Erosion and Corrosion Protection in Copper Microchannel Coolers
Nathan Van Velson and Matt Flannery, IEEE ITherm Conference, May 31-June 3, 2016, Las Vegas, NV
Download PDFHeat Pipes used as Heat Flux Transformers and for Remote Heat Rejection
Devin Pellicone and Jens Weyant, PCIM Europe 2016, Nuremberg, Germany, May 10-12, 2016
Download PDFEnhanced Filmwise Condensation with Thin Porous Coating
Ying Zheng, Chien-Hua Chen, Howard Pearlman, Richard Bonner, First Pacific Rim Thermal Engineering Conference, PRTEC, March 13-17, 2016, Hawaii's Big Island, USA.
Download PDFOptimized Alkali Metal Backup Cooling System Tested with a Stirling Convertor
Calin Tarau, Nuclear and Emerging Technologies for Space (NETS) 2016, Huntsville, AL, February 22-25, 2016.
Download PDFStatus of the Development of Low Cost Radiator for Surface Fission Power II
Calin Tarau, Nuclear and Emerging Technologies for Space (NETS) 2016, Huntsville, AL, February 22-25, 2016.
Download PDFPassivation and Stabilization of Aluminum Nanoparticles for Energetic Materials
Matthew Flannery, Journal of Nanomaterials, vol. 2015, Received 17 June 2015; Accepted 13 October 2015
View Full PaperModeling high-temperature diffusion of gases in micro and mesoporous amorphous carbon
Raghavan Ranganathan, Srujan Rokkam, Tapan Desai, Pawel Keblinski, Peter Cross, and Richard Burnes, The Journal of Chemical Physics 143, 084701 (2015).
Download PDF View Full PaperOptimized Heat Pipe Backup Cooling System Tested with a Stirling Convertor
Carl L. Schwendeman, Calin Tarau, Nicholas A. Schifer, John Polak, and William G. Anderson, 13th International Energy Conversion Engineering Conference (IECEC), Orlando, FL, CA, July 27-29, 2015.
Download PDFStatus of the Low-Cost Radiator for Fission Power Thermal Control
Taylor Maxwell, Calin Tarau, William G. Anderson, Scott Garner, Matthew Wrosch, and Maxwell H. Briggs, 13th International Energy Conversion Engineering Conference (IECEC), Orlando, FL, CA, July 27-29, 2015.
Download PDFWater-Titanium Heat Pipes for Spacecraft Fission Power
Rebecca Hay and William G. Anderson, 13th International Energy Conversion Engineering Conference (IECEC), Orlando, FL, CA, July 27-29, 2015.
Download PDFTwo-Phase Thermal Switch for Spacecraft Passive Thermal Management
Nathan Van Velson, Calin Tarau, and William G. Anderson, 45th International Conference on Environmental Systems (IECS), Bellevue, WA, July 12-16, 2015.
Download PDFMultiple Loop Heat Pipe Radiator for Variable Heat Rejection in Future Spacecraft
Nathan Van Velson, Calin Tarau, Mike DeChristopher, and William G. Anderson, 45th International Conference on Environmental Systems (IECS), Bellevue, WA, July 12-16, 2015.
Download PDFHybrid Heat Pipes for Planetary Surface and High Heat Flux Applications
Mohammed T. Ababneh, Calin Tarau, and William G. Anderson, 45th International Conference on Environmental Systems (IECS), Bellevue, WA, July 12-16, 2015.
Download PDFExperimental Investigation on the Thermal and Hydraulic Performance of Alumina–Water Nanofluids in Single-Phase Liquid-Cooled Cold Plates
Ehsan Yakhshi-Tafti, Sanjida Tamanna and Howard Pearlman, Journal of Heat Transfer, Vol. 137, July 1, 2015
View Full PaperA “Swiss-Roll” Fuel Reformer: Experiments and Modeling
Chien-Hua Chen, Bradley Richard, Ying Zheng, Howard Pearlman, Shrey Trivedi, Srusti Koli, Andrew Lawson, and Paul Ronney, “A “Swiss-Roll” Fuel Reformer: Experiments and Modeling,” 9th U. S. National Combustion Meeting, Cincinnati, OH, May 17-20, 2015.
Download PDFEffect of Porous Coating on Condensation Heat Transfer
Ying Zheng, Chien-hua Chen, Howard Pearlman, Matt Flannery and Richard Bonner. 9th International Conference on Boiling and Condensation Heat Transfer, April 26-30, 2015, Boulder, Colorado.
Download PDFHigh Temperature Water-Titanium Heat Pipes for Spacecraft Fission Power
Rebecca Hay and William G. Anderson, Nuclear and Emerging Technologies for Space (NETS-2015), Albuquerque, NM, February 23-26, 2015.
Download PDFNanoscale Coating for Microchannel Cooler Protection in High Powered Laser Diodes
Tapan Desai, Matthew Flannery, Nathan Van Velson, and Philip Griffin, “Nanoscale Coating for Microchannel Cooler Protection in High Powered Laser Diodes,” Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM 2015), San Jose, CA, March 16-19, 2015.
Download PDFFuel-Flexible Hybrid Solar Coal Gasification Reactor
M. Flannery et al., "Fuel-Flexible Hybrid Solar Coal Gasification Reactor," 2014 Pittsburgh Coal Conference, Pittsburgh, PA, October 6 - 9, 2014.
Download PDFHeat Pipe Embedded Carbon Fiber Reinforced Polymer Composite Enclosures for Avionics Thermal Management
Andrew Slippey, Michael C. Ellis, Bruce Conway, and Hyo Chang Yun. SAE 2014 Aerospace Systems and Technology Conference, Cincinnati, OH, September 23-25, 2014.
Download PDFPassive Thermal Management for Avionics in High Temperature Environments
Michael C. Ellis, William G. Anderson, and Jared R. Montgomery. SAE 2014 Aerospace Systems and Technology Conference, Cincinnati, OH, September 23-25, 2014.
Download PDFPassivation of Aluminum Nanoparticles by Plasma-Enhanced Chemical Vapor Deposition for Energetic Nanomaterials
T. Desai et al., ACS Applied Materials and Interfaces Journal, 2014, 6 (10), pp. 7942–7947, DOI: 10.1021/am5012707
Download PDFThermal Modeling and Experimental Validation for High Thermal Conductivity Heat Pipe Thermal Ground Planes
Ababneh, Mohammed T., Shakti Chauhan, Pramod Chamarthy, and Frank M. Gerner. "Thermal Modeling and Experimental Validation for High Thermal Conductivity Heat Pipe Thermal Ground Planes." Journal of Heat Transfer 136, no. 11 (2014): 112901.
View Full PaperLaunch Vehicle Avionics Passive Thermal Management
W. G. Anderson et al., “Launch Vehicle Avionics Passive Thermal Management,” 44th International Conference on Environmental Systems (ICES 2014), Tucson, AZ, July 13-17, 2014.
Download PDFLow Cost Radiator for Fission Power Thermal Control
Taylor Maxwell et al, 12th International Energy Conversion Engineering Conference (IECEC), Cleveland, OH, July 28-30, 2014.
Download PDFFlow Boiling Heat Transfer Enhancement in Subcooled and Saturated Refrigerants in Minichannel Heat Sinks
E. Yakhshi-Tafti et al., ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting and 12th International Conference on Nanochannels, Microchannels, and Minichannels, August 3-7, 2014, Chicago, IL.
Download PDF View Full PaperThermal-Fluid Modeling for High Thermal Conductivity Heat Pipe Thermal Ground Planes
M. T. Ababneh et al., published in the AIAA Journal of Thermophysics and Heat Transfer, Vol. 28, No. 2, pp. 270-278, April 2014.
Download PDFThermoelectric Performance Model Development and Validation for a Selection and Design Tool
Thomas Nunnally, Devin Pellicone, Nathan Van Velson, James Schmidt, Tapan Desai, 2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, May 27-30, 2014.
Download PDFHigh Heat Flux Heat Pipes Embedded in Metal Core Printed Circuit Boards for LED Thermal Management
Dan Pounds, Richard W. Bonner III, 2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, May 27-30, 2014
Download PDF View Full PaperEnhancing Thermal Performance in Embedded Computing for Ruggedized Military and Avionics Applications
Darren Campo, Jens Weyant, Bryan Muzyka, 2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, May 27-30, 2014.
Download PDFA Corrosion and Erosion Protection Coating for Complex Microchannel Coolers used in High Power Laser Diodes
Tapan G. Desai, Matthew Flannery, Angie Fan, Jens Weyant, Henry Eppich, Keith Lang, Richard Chin, and Aland Chin, 2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, May 27-30, 2014
Download PDFThe Thermal Conductivity of Clustered Nanocolloids
T. Desai et al., APL Materials, 2, 066102 (2014); doi: 10.1063/1.4880975. 21 May 2014;
Download PDFDiffuse interface modeling of void growth in irradiated materials. Mathematical, thermodynamic and atomistic perspectives
Anter El-Azab Karim Ahmed, Srujan Rokkam, Thomas Hochrainer, Published in Current Opinion in Solid State and Materials Science (COSSMS), Vol. 18, pg. 90-98, 2014.
Download PDFEffect of Crosslink Formation on Heat Conduction in Amorphous Polymers
Gota Kikugawa, Tapan G. Desai, et al., Journal of Applied Physics 114, published online July 16, 2013
Download PDF View Full PaperVariable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source
Calin Tarau, et al.,11th International Energy Conversion Engineering Conference (IECEC), San Jose, CA, July 15-17, 2013.
Download PDF View Full PaperHigh Temperature Heat Pipes for Space Fission Power
Kara L. Walker, et al.,11th International Energy Conversion Engineering Conference (IECEC), San Jose, CA, July 15-17, 2013.
Download PDF View Full PaperVariable Conductance Heat Pipe Radiator for Lunar Fission Power Systems
William G. Anderson, et al., 11th International Energy Conversion Engineering Conference (IECEC), San Jose, CA, July 15-17, 2013.
Download PDF View Full PaperAmmonia and Propylene Loop Heat Pipes with Thermal Control Valves – Thermal/Vacuum and Freeze/Thaw Testing
Kara Walker, et al., 43rd International Conference on Environmental Systems (ICES 2013), Vail, CO, July 14-18, 2013.
Download PDF View Full PaperIntermediate Temperature Heat Pipe Life Tests and Analyses
W. G. Anderson, et al., 43rd International Conference on Environmental Systems (ICES 2013), Vail, CO, July 14-18, 2013
Download PDF View Full PaperCorrelation for dropwise condensation heat transfer: Water, organic fluids, and inclination
Richard W. Bonner III, International Journal of Heat and Mass Transfer, Volume 61, June 2013, Pages 245-253
View Full PaperA Non-Catalytic Fuel-Flexible Reformer
Chien-Hua Chen, et al., 8th U. S. National Combustion Meeting, hosted by the University of Utah, May 19-22, 2013
Download PDF View Full PaperPlanar vapor chamber with hybrid evaporator wicks for the thermal management of high-heat-flux and high-power optoelectronic devices
P. Dussinger et al., International Journal of Heat and Mass Transfer, Volume 60, pp. 163–169, May 2013.
View Full PaperVariable Conductance Thermal Management System for Balloon Payloads
Calin Tarau and William G. Anderson, 20th AIAA Lighter-Than-Air Systems Technology Conference, Daytona Beach, FL, March, 25-28, 2013
Download PDF View Full PaperPreliminary First Principle Based Electro-thermal Coupled Solver for Silicon Carbide Power Devices
Angie Fan et al., 29th IEEE SEMI-THERM Symposium, San Jose, CA, March 17-21, 2013
Download PDFVariable Conductance Heat Pipe Radiator Trade Study for Lunar Fission Power Systems
William G. Anderson, Bryan J. Muzyka, and John R. Hartenstine, Nuclear and Emerging Technologies for Space (NETS-2013), Albuquerque, NM, February 25-28, 2013.
Download PDF View Full PaperAlkali Metal Backup Cooling for Stirling Systems – Experimental Results
Carl Schwendeman, Calin Tarau, William G. Anderson, and Peggy A. Cornell, Nuclear and Emerging Technologies for Space (NETS-2013), Albuquerque, NM, February 25-28, 2013.
Download PDF View Full PaperAlkali Metal Heat Pipes for Space Fission Power
Kara L. Walker, Calin Tarau, and William G. Anderson, Nuclear and Emerging Technologies for Space (NETS-2013), Albuquerque, NM, February 25-28, 2013.
Download PDF View Full PaperSyngas Production by Thermochemical Conversion of CO2 and H2O Using a High-Temperature Heat Pipe Based Reactor
H. Pearlman and Chien-Hua Chen, SPIE Solar Hydrogen and Nanotechnology VII, Proceedings of SPIE Vol. 8469 San Diego, CA, August 12-14, 2012.
Download PDF View Full PaperDiode Heat Pipes for Venus Landers
Calin Tarau et al., 9th Intersociety Energy and Conversion Engineering Conference (IECEC), San Diego, CA, July 31 - August 3, 2012.
Download PDF View Full PaperLong-Lived Venus Lander Thermal Management System Design
Rebecca Hay et al., 9th Intersociety Energy and Conversion Engineering Conference (IECEC), Atlanta, GA, July 30 July-August 1, 2012.
Download PDFVariable Conductance Heat Pipes for Variable Thermal Links
W. G. Anderson et al., 42nd International Conference on Environmental Systems (ICES 2012), San Diego, CA, July 15-19, 2012.
Download PDF View Full PaperPressure Controlled Heat Pipe Applications
W. G. Anderson et al., 16th International Heat Pipe Conference, Lyon, France, May 20-24, 2012.
Download PDF View Full PaperThe Effect of Device Level Modeling on System-Level Thermal Predictions
Jens Weyant, et al., ITherm, San Diego, CA, May 30, 2012,
Download PDF View Full PaperIntegration of a Phase Change Material for Junction-Level Cooling in GaN Devices
Daniel Piedra, et al., Semitherm, San Jose, CA, March 2012
Download PDF View Full PaperAn Innovative Passive Cooling Method for High Performance Light-emitting Diodes
Angie Fan, et al., Semitherm, San Jose, CA, March 2012
Download PDF View Full PaperUltra High Temperature Isothermal Furnace Liners (IFLs) For Copper Freeze Point Cells
Peter Dussinger and John Tavener, 9th International Temperature Symposium, Anaheim, CA, March 2012
Download PDF View Full PaperHigh Heat Flux, High Power, Low Resistance, Low CTE Two-Phase Thermal Ground Planes for Direct Die Attach Applications
Peter Dussinger, et al., GOMACTech 2012, Las Vegas, Nevada, March 2012
Download PDF View Full PaperPassive Control of a Loop Heat Pipe with Thermal Control Valve for Lunar Lander Application
K. L. Walker et al., 42nd International Conference on Environmental Systems (ICES 2012), San Diego, CA, July 15-19, 2012.
Download PDF View Full PaperA Computational Model of a Phase Change Material Heat Exchanger in a Vapor Compression System with a Large Pulsed Heat Load
G. Troszak and X. Tang, Proceedings of the ASME 2012 Summer Heat Transfer Conference, Puerto Rico, July 8-12, 2012.
Download PDF View Full Paper2-D Simulation of Hot Electron-Phonon Interactions in a Submicron Gallium Nitride Device Using Hydrodynamic Transport Approach
Angie Fan et al., ASME 2012 Summer Heat Transfer Conference, Puerto Rico, USA , July 8-12, 2012
Download PDF View Full PaperNovel Junction Level Cooling in Pulsed GaN Devices
Tapan G. Desai, et al., ITherm, San Diego, CA, May 30, 2012,
Download PDF View Full PaperIntermediate Temperature Heat Pipe Life Tests
W. G. Anderson, et al., 16th International Heat Pipe Conference, Lyon, France, May 20-24, 2012.
Download PDF View Full PaperPassivation Coatings for Micro-channel Coolers
Richard W. Bonner III, Jens Weyant, Evan Fleming, Kevin Lu, Daniel Reist, APEC 2012, Orlando FL, February 1, 2012
Download PDF View Full PaperPressure Controlled Heat Pipe Solar Receiver for Regolith Oxygen Production with Multiple Reactors
John Hartenstine, et al., 9th Intersociety Energy and Conversion Engineering Conference (IECEC), San Diego, CA, July 31 - August 3, 2011
Download PDF View Full PaperThermal Management System for Long-Lived Venus Landers
Calin Tarau, et al., 9th Intersociety Energy and Conversion Engineering Conference (IECEC), San Diego, CA, July 31 - August 3, 2011
Download PDF View Full PaperPressure Controlled Heat Pipes
William Anderson, et al., 41st International Conference on Environmental Systems, Portland, OR, July 17-21, 2011
Download PDF View Full PaperVariable Conductance Heat Pipe for a Lunar Variable Thermal Link
Chris Peters, et al., 41st International Conference on Environmental Systems, Portland, OR, July 17-21, 2011
Download PDF View Full PaperTwo-Phase Heat Sinks with Microporous Coating
T. Semenic and S. M. You, 9th International Conference on Nanochannels, Microchannels, and Minichannels, Edmonton, CA, June 19-22, 2011
Download PDF View Full PaperDie Level Thermal Storage for Improved Cooling of Pulsed Devices
Richard Bonner III, et al., Semitherm, San Jose, CA., March 2011
Download PDF View Full PaperA 2-D Numerical Study of Microscale Phase Change Material Thermal Storage for GaN Transistor Thermal Management
Xudong Tang, et al., Semitherm, San Jose, CA, March 2011
Download PDFDynamic Response of Phenolic Resin and Its Carbon-nanotube Composites to Shock Wave Loading
Arman, et. al., Journal of Applied Physics, 109, 013503 (2011)
Download PDF View Full PaperLoop Heat Pipe with Thermal Control Valve for Variable Thermal Conductance Link of Lunar Landers and Rovers
Loop Heat Pipe with Thermal Control Valve for Variable Thermal Conductance Link of Lunar Landers and Rovers, J. R. Hartenstine et al., 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January 4-7, 2011.
Download PDF View Full PaperElectronics Cooling Using High Temperature Loop Heat Pipes with Multiple Condensers
William G. Anderson, et al., SAE Power Systems Conference, Ft. Worth, TX, November 2010
Download PDF View Full PaperDevelopment of Heat Pipe Loop Technology for Military Vehicle Electronics Cooling
Xudong Tang et al., NDIA Ground Vehicle Systems Engineering and Technology Symposium, Dearborn, Michigan, August 2010
Download PDF View Full PaperDropwise Condensation Life Testing of Self Assembled Monolayers
Richard Bonner III, IHTC14, Washington, DC, August 2010
Download PDF View Full PaperHeat and Mass Transfer in a Permeable Fabric system Under Hot Air Jet Impingement,
Sangsoo Lee et. al., International Heat Transfer Conference (IHTC14), Washington, DC, August, 2010
Download PDFVariable Thermal Conductance Link for Lunar Landers and Rovers
William G Anderson et. al., IECEC, Nashville, Tennessee, July, 2010
Download PDF View Full PaperSodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems – Design and Experimental Results
Calin Tarau and William G Anderson, IECEC, Nashville, Tennessee, July, 2010
Download PDFSodium Variable Conductance Heat Pipe with Carbon-Carbon Radiator for Radioisotope Stirling Systems
Calin Tarau and William G. Anderson, 15th International Heat Pipe Conference, Clemson, SC, April 2010
Download PDFLow-Temperature, Dual Pressure Controlled Heat Pipes for Oxygen Production from Lunar Regolith
Kara Walker et al., 15th International Heat Pipe Conference, Clemson, South Carolina, April, 2010
Download PDF View Full PaperIntermediate Temperature Fluids for Heat Pipes and Loop Heat Pipes
William G. Anderson, John R. Hartenstine, David B. Sarraf, and Calin Tarau, Advanced Cooling Technologies, Inc., Pennsylvania, 15th International Heat Pipe Conference (15th IHPC) Clemson, USA, April 25-30, 2010.
Download PDF View Full PaperDropwise Condensation in Vapor Chambers
Richard Bonner, 26th IEEE Semi-Therm Symposium, Santa Clara, California, February 2010
Download PDF View Full PaperSodium VCHP with Carbon-Carbon Radiator for Radioisotope Stirling Systems,
Calin Tarau, et al., Space, Propulsion and Energy Sciences International Forum (SPESIF), Laurel, Maryland, February 2010
Download PDF View Full PaperAdvanced VCS Evaporators for Lunar Lander and Lunar Habitat Thermal Control Applications
Tadej Semenic, Space, Propulsion and Energy Sciences International Forum (SPESIF), Laurel, Maryland, February 2010
Download PDF View Full PaperModeling Initial Stage of Phenolic Pyrolysis: Graphitic Precursor Formation and Interfacial Effects
Tapan Desai, et al., Polymer, 52, 2010
Download PDF View Full PaperSlip Behavior at Ionic Solid-fluid Interfaces
Tapan Desai, NDIA Chemical Physics Letters, 501, 2010, 93-97
Download PDF View Full PaperRoles of Atomic Restructuring in Interfacial Phonon Transport
Seungha Shin et. al., Physical Review B, 82, 081302 (2010)
Download PDF View Full PaperAnisotropic Shock Response of Columnar Nanocrystalline Cu
Sheng-Nian Luo et. al., Journal of Applied Physics , 107, 123507 (2010)
Download PDFHeat Pipe Embedded Alsic Plates for High Conductivity-Low CTE Heat Spreaders
J. Weyant, ITHERM 2010, Las Vegas NV,
Download PDF View Full PaperPressure Controlled Heat Pipe Solar Receiver for Oxygen Production from Lunar Regolith
John R. Hartenstine, et al., AIAA Aerospace Sciences Meeting, Orlando, Florida, January 2010
Download PDF View Full PaperSodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems
Calin Tarau, et al., 7th International Energy Conversion Engineering Conference, Denver Colorado, August 2009
Download PDF View Full PaperLoop Heat Pipe Design, Manufacturing and Testing – an Industrial Perspective
William Anderson, et al., ASME 2009 Heat Transfer Summer Conference, San Francisco, California, July 2009
Download PDF View Full PaperDropwise Condensation on Surfaces with Graded Hydrophobicity
Richard Bonner, ASME 2009 Heat Transfer Summer Conference, San Francisco, California, July 2009
Download PDF View Full PaperEvaporators for High Temperature Lift Vapor Compression Loop for Space Applications
Tadej Semenic and Xudong Tang, ASME 2009 Heat Transfer Summer Conference, San Francisco, California, July 2009
Download PDF View Full PaperVariable Conductance Heat Pipe Radiators for Lunar and Martian Environments
William Anderson, et al., Space, Propulsion and Energy Sciences International Forum (SPESIF), Huntsville, Alabama, February 2009
Download PDF View Full PaperHigh Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems
Calin Tarau, et al., Space, Propulsion and Energy Sciences International Forum (SPESIF), Huntsville, Alabama, February 2009
Download PDF View Full PaperHeat Pipe Solar Receiver for Oxygen Production of Lunar Regolith
John Hartenstine, et al., Space, Propulsion and Energy Sciences International Forum (SPESIF), Huntsville, Alabama, February 2009
Download PDF View Full PaperVariable Conductance Heat Pipe Performance after Extended Periods of Freezing
Michael Ellis and William Anderson, Space, Propulsion and Energy Sciences International Forum (SPESIF), Huntsville, Alabama, February 2009
Download PDF View Full PaperLoop Heat Pipe for TacSat-4
Peter Dussinger, et al., Space, Propulsion and Energy Sciences International Forum (SPESIF), Huntsville, Alabama, February 2009
Download PDF View Full PaperAdvanced Thermal Management Technologies for High Power Automotive Equipment
Jon Zuo, et al., National Defense Industrial Association Ground Vehicle Power and Energy Workshop, Troy, Michigan, November 2008
Download PDF View Full PaperVibration and Shock Tolerant Capillary Two-Phase Loop Technology for Vehicle Thermal Control
Xudong Tang and Chanwoo Park, 2008 ASME Summer Heat Transfer Conference, Jacksonville, Florida, August 2008
Download PDF View Full PaperNaK Variable Conductance Heat Pipe for Radioisotope Stirling Systems
Calin Tarau, et al., 6th International Energy Conversion Engineering Conference (IECEC), Cleveland, Ohio, July 2008
Download PDF View Full PaperHeat Pipe Cooling of Concentrating Photovoltaic (CPV) Systems
William Anderson, et al., 6th International Energy Conversion Engineering Conference (IECEC), Cleveland, Ohio, July 2008
Download PDF View Full PaperStartup Characteristics and Gravity Effects on a Medium/High-Lift Heat Pump Using Advanced Hybrid Loop Technology
Eric Sunada, et al., 38th SAE International Conference on Environmental Systems, San Francisco, California, June 2008
Download PDF View Full PaperHigh Temperature and High Heat Flux Thermal Management for Electronics
David Sarraf and William Anderson, IMAPS International Conference on High Temperature Electronics Conference (HiTEC 2008), Albuquerque, New Mexico, May 2008
Download PDF View Full PaperHeat Pipe Cooling of Concentrating Photovoltaic Cells
William Anderson, et al., 33rd IEEE Photovoltaic Specialists Conference, San Diego, California, May 2008
Download PDF View Full PaperLocal Heat Transfer Coefficient Measurements of Flat Angled Sprays Using Thermal Test Vehicle
Richard Bonner, et al., 24th IEEE Semi-Therm Symposium, San Jose, California, March 2008
Download PDF View Full PaperPressure Controlled Heat Pipe for Precise Temperature Control
David Sarraf, et al., Space Technology and Applications International Forum (STAIF), Albuquerque, New Mexico, February 2008
Download PDFTitanium Loop Heat Pipes for Space Nuclear Power Systems
John Hartenstine, et al., Space Technology and Applications International Forum (STAIF), Albuquerque, New Mexico, February 2008
Download PDF View Full PaperVariable Conductance Heat Pipes for Radioisotope Stirling Systems
William Anderson and Calin Tarau, Space Technology and Applications International Forum (STAIF), Albuquerque, New Mexico, February 2008
Download PDF View Full PaperVapor Compression Hybrid Two-Phase Loop Technology for Lunar Surface Applications
Chanwoo Park and Eric Sunada, Space Technology and Applications International Forum (STAIF), Albuquerque, New Mexico, February 2008
Download PDF View Full PaperExperimental Study of Oscillating Flow Heat Transfer
Angie Fan, et al., Micro/Nanoscale Heat Transfer International Conference, Tainan, Taiwan, January 2008
Download PDF View Full PaperMetal Hydride Heat Storage Technology for Directed Energy Weapon Systems
Chanwoo Park, et al., 2007 ASME International Mechanical Engineering Congress & Exhibition, Seattle, Washington, November 2007
Download PDF View Full PaperElectronics Thermal Management Using Advanced Hybrid Two-Phase Loop Technology
Chanwoo Park, et al., 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, Canada, July 2007.
Download PDF View Full PaperLoop Thermosyphon Design for Cooling of Large Area, High Heat Flux Sources
John Hartenstine, et al., InterPACK 2007, Vancouver, Canada, July 2007.
Download PDF View Full PaperHeat Pipes for High Temperature Thermal Management
David Sarraf and William Anderson, InterPACK 2007, Vancouver, Canada, July 2007.
Download PDF View Full PaperIntermediate Temperature Fluids for Heat Pipes and Loop Heat Pipes
William Anderson, 2007 International Energy Conversion Engineering Conference, St. Louis, MO, June 2007.
Download PDF View Full PaperIntermediate Temperature Fluids Life Tests – Experiments
William Anderson, et al., 2007 International Energy Conversion Engineering Conference, St. Louis, MO, June 2007.
Download PDF View Full PaperIntermediate Temperature Fluids Life Tests – Theory
Calin Tarau, et al., Space Technology and Applications International Forum (STAIF), Albuquerque, NM, February 11 - 15, 2007.
Download PDF View Full PaperSpacecraft Thermal Management Using Advanced Hybrid Two-Phase Loop Technology
Chanwoo Park, et al., Space Technology and Applications International Forum (STAIF), Albuquerque, NM, February 11 - 15, 2007.
Download PDF View Full PaperAdvanced Hybrid Cooling Loop Technology for High Performance Thermal Management
Chanwoo Park, et al., 2006 International Energy Conversion Engineering Conference, San Diego, CA, June 2006.
Download PDF View Full PaperHeat Pipe Heat Exchanger with Two Levels of Isolation for Environmental Control of Manned Spacecraft Crew Compartment
David Sarraf, 37th International Conference on Environmental Systems, Norfolk, VA, July 17-20, 2006.
Download PDF View Full PaperPassive Thermal Management for a Fuel Cell Reforming Process
David Sarraf, et al., 2006 International Energy Conversion Engineering Conference, San Diego, CA, June 2006.
Download PDF View Full PaperHigh Temperature Water-Titanium Heat Pipe Radiator
William Anderson, et al., 2006 International Energy Conversion Engineering Conference, San Diego, CA, June 2006.
Download PDF View Full PaperHigh Temperature Titanium-Water and Monel-Water Heat Pipes
William Anderson, et al., 2006 International Energy Conversion Engineering Conference, San Diego, CA, June 2006.
Download PDF View Full PaperHigh-Temperature Water Heat Pipes
David Sarraf and William Anderson, IMAPS International Conference on High Temperature Electronics, Santa Fe, NM, May 15 - 18, 2006
Download PDF View Full PaperHigh Performance Heat Storage and Dissipation Technology
Chanwoo Park, et al., 2005 ASME International Mechanical Engineering Congress & Exposition (IMECE), Orlando, FL, November 5 - 11, 2005.
Download PDF View Full PaperDesign and Testing of Titanium/Cesium and Titanium/Potassium Heat Pipes
Peter Dussinger, et al., 2005 International Energy Conversion Engineering Conference (IECEC), San Francisco, CA, August 2005.
Download PDF View Full PaperHigh Temperature Lightweight Heat Pipe Panel Technology Development
Ted Stern and William Anderson, Space Nuclear Conference 2005, San Diego, CA, June 2005.
Download PDF View Full PaperLoop Heat Pipe Radiator Trade Study for the 300-550K Temperature Range
William Anderson and Walter Bienert, Space Technology and Applications International Forum (STAIF), Albuquerque, New Mexico, February 2005
Download PDF View Full PaperHybrid Loop Thermal Bus Technology for Vehicle Thermal Management
Chanwoo Park, et al., 24th Army Science Conference, Orlando, FL, November 29 - December 2, 2004
Download PDF View Full Paper